Contents

Preface to the English Translation	xi
Prefaces to the German Editions Preface to the first German Edition Preface to the second German Edition Preface to the third German Edition	xiii xiii xiv xiv
Part 1. Prologue	1
Chapter 1. Math Becomes a Cult—Description of a Hope GERO VON RANDOW	3
Part 2. Case Studies	5
Chapter 2. The Mathematics of the Compact Disc JACK H. VAN LINT Words and codes A simple example From music to audiobits Reed–Solomon codes The compact disc References	7 7 9 9 12 14
 Chapter 3. Image Processing and Imaging for Operation Planning in Liver Surgery HEINZ-OTTO PEITGEN, CARL EVERTSZ, BERNHARD PREIM, DIRK SELLE, THOMAS SCHINDEWOLF, AND WOLF SPINDLER 1. Introduction 2. Medical background 3. Architecture of a surgery planning system 4. Liver and tumor segmentation 5. Vessel segmentation and analysis 6. Visualization and exploration of the analysed data 7. Summary 8. Prospect References 	15151617182023252622622622622622000000000000000000
Chapter 4. The Quickest Path to the Goal RALF BORNDÖRFER, MARTIN GRÖTSCHEL AND ANDREAS LÖBEL 1. Historical overture	27 27

CON	TE	NTS
-----	----	-----

a Collins following the		22
2. Combinatorics of shortest paths		49
3. Combinations of paths		40
4. Outlook		49
5. Further reading		50
6. Solutions to the questions		51
Chapter 5. Romeo and Juliet, Spontaneous Pattern Formation, Instability	and Turing	's
BERNOLD FIEDLER		53
1 Turing dreams		53
2 Romeo and Juliet		54
3 Roberto and Julietta		55
i A When sisters goes in		57
4. When sisters gossip		60
6. Turing's theorem		63
7. Mathematical summary		64
7. Mathematical summary		66
8. Outlook		69
References	2	00
Chapter 6. Mathematics and Intelligent Materials		
Stefan Müller		71
Mathematics as a key technology		71
Metals with memory		71
Memory and microstructure	۰ د	71
Microstructures everywhere	1	74
Microstructures as optimal forms	, 1(X v	75
Mathematical chance helps—Young measures		76
Design of new materials through mathematics	,	77
Future challenges: multiscale mathematics		
or the bridging from atoms to materials		77
Protein folding, rough energy landscapes, and optimization		80
References		80
Chapter 7. Discrete Tomography: From Battleship to Nanotech	nology	
Peter Gritzmann		81
A glimpse into the human body		81
Behind the teacher's back		82
Duty rosters and data security		87
Reconstruction of crystalline structures	: 4] ¹ .	87
Uniqueness theorems	· · · ·	91
Complexity and algorithms	$(1 - \frac{1}{2})^{\frac{1}{2}} = 0$	95
Stability	$+3x_{\rm eff}^{\rm eff}(x) = +$	96
Chapter 8 Reflections on Reflections		
Lübgen Bichtep-Ceper		00
Childhood memories	·	00
1 Cood angles bad angles	X	99 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 5 ·	99 101
2. One, two, times minity 3. Kalaidoscones-haanty-viewers		101
A Number games		101
4. Munner Rames	1 C C	102

vi

5. Light billiards, anti-stealth-boats and egoist mirrors	104
5. The perfect display cupboard	106
7. The way from the right angle 8. Platonic boaution	108
0. Christmas chaos	110
10 Circle inversions	112
11. A new universe	112
12. To infinity, and beyond	116
13. Reading and surfing tips	118
Part 3. Current Topics	121
Chapter 9. The Role of Mathematics in the Financial Markets	
WALTER SCHACHERMAYER	123
References	133
Chapter 10. Electronic Money:	
An Impossibility or Already a Reality?	
Albrecht Beutelspacher	135
1. Introduction	135
2. What is money?	135
3. Cryptographic mechanisms	136
4. Electronic money: the basic scheme	138
5. Double spending	139
6. Extra properties	140
Summary	141
References	141
Chapter 11. Spheres in the Computer—the Kepler Conjecture	
MARTIN HENK AND GÜNTER M. ZIEGLER	143
A really hard nut	143
In the plane	145
Into the third dimension	152
A regine?	157
Computer versus Kepler	161
Problems problems	161
References	163
Chapter 12. How Do Quanta Compute?	
The New World of the Quantum Computer	
EHRHARD BEHRENDS	165
1. Why are prime numbers important in cryptography?	166
2. A mathematical preparation: period lengths	107
 Some quantum mechanics Obits: the components of a quantum computer 	10ð 170
4. Wous: the components of a quantum computer 5. How does one factorize large numbers with a quantum computer?	170
6. Summarv	173

vii

.

Chapter 13. Fermat's Last Theorem—the Solution	
	175
1 Introduction	175
2. How did Fermat come to his Conjecture?	175
2. The pariod between 1637 and 1080	177
A The three worlds	178
4. The three worlds 5. The bridges between the three worlds	181
6. The onti Format world does not exist	182
References	182
Chapter 14. A Short History of the Nash Equilibrium	
KARL SIGMUND	185
Does Sherlock Holmes have a chance?	185
The art of the bluff	186
Maximin solutions	188
The Nash equilibrium	189
Ideas from evolution theory	190
The prisoners' dilemma	191
Tit for Tat	192
Altruism versus self-interest	193
Chapter 15. Mathematics in the Climate of Global Change	
RUPERT KLEIN	197
Why climate and climate impact research?	197
Complexities	199
"Story exercises"	202
Multiple scales	204
Approximate solutions and missing lattice points	206
Multiscale asymptotics for the oscillator with small mass and damping	g 208
Hurricanes: an example in multiscale phenomena	212
Conclusion	214
References	215
Part 4. The Central Theme	217
Chapter 16. Prime Numbers, Secret Codes	
and the Boundaries of Computability	
Martin Aigner	219
1. Prime numbers	219
2. Secret codes	221
3. Boundaries of computability	224
References	226
Chapter 17. The Mathematics of Knots	007
ELMAK VOGT History	227
mistory Wild and tame limits and the second	227
for the wight methametical example	001
for the right mathematical concept	231

Polygonal knots	
The Reidemeister approach to knot theory	235
There are true knots	238
Some families of knots	244
Chapter 18. On Soap Bubbles	
Dirk Ferus	251
References and picture credits	259
Chapter 19. Heat Diffusion, the Structure of Space,	
and the Poincaré Conjecture	
Klaus Ecker	261
1. Introduction	261
2. Geometry and topology of surfaces	263
3. Geometry and topology of three-dimensional spaces	276
4. Heat diffusion and the geometry of curves	285
5. Ricci flow, geometrization and the Poincaré Conjecture	288
6. Conclusion	296
References	296
Chapter 20. Chance and Mathematics: a Late Love	
Ehrhard Behrends	299
1. How did it start?	299
2. How is it done today?	300
3. Fundamental concepts	302
4. Games of chance	305
5. Randomness vanishes at infinity	307
6. The productive role of chance	309
7. Chance in the microcosmos	310
8. Philosophical	312
Part 5. Epilogue	315
Chapter 21. The Prospects for Mathematics	
in a Multi-Media Civilization	
PHILIP J. DAVIS	317
Poincaré's predictions	318
What will pull mathematics into the future?	318
The inner texture (or soul) of mathematics	324
A personal illumination	329
References	330