
contents

preface xvii
acknowledgments xix
about this book xxi
about the authors xxv
about the cover illustration xxvii

PART 1 FUNDAMENTALS..... .1

f Java 8: why should you care? 3
1.1 Why is Java still changing? 5

Java's place in the programming language ecosystem 6
Stream processing 7 • Passing code to methods with
behavior parameterization 9 • Parallelism and shared
mutable data 9* Java needs to evolve 10

1.2 Functions in Java 11
Methods and lambdas as first-class citizens 12 * Passing code:
an example 13 * From passing methods to lambdas 15

1.3 Streams 16
Multithreading is difficult 17

1.4 Default methods 20
1.5 Other good ideas from functional programming 21
1.6 Summary 23

ix

X CONTENTS

Passing code with behavior parameterization 24

2.1 Coping with changing requirements 25
First attempt: filtering green apples 25 • Second attempt:
parameterizing the color 26 • Third attempt: filtering with
every attribute you can think of 27

2.2 Behavior parameterization 27
Fourth attempt: filtering by abstract criteria 29

2.3 Tackling verbosity 32
Anonymous classes 33 • Fifth attempt: using an
anonymous class 33 • Sixth attempt: using a lambda
expression 35 • Seventh attempt: abstracting
over List type 36

2.4 Real-world examples 36
Sorting with a Comparator 36 • Executing a block of
code with Runnable 3 7 • GUI event handling 38

2.5 Summary 38

Lambda expressions 39
3.1 Lambdas in a nutshell 40
3.2 Where and how to use lambdas 43

Functional interface 43 * Function descriptor 45

3.3 Putting lambdas into practice: the execute
around pattern 47
Step 1: Remember behavior parameterization 47
Step 2: Use afunctional interface to pass behaviors 48
Step 3: Execute a behavior! 48 • Step 4: Pass lambdas 48

3.4 Using functional interfaces 50
Predicate 50 " Consumer 50 • Function 51

3.5 Type checking, type inference, and restrictions 56
Type checking 56 * Same lambda, different functional
interfaces 57 * Type inference 58 • Using local variables 59

3.6 Method references 60
In a nutshell 60 • Constructor references 63

3.7 Putting lambdas and method references into practice! 65
Step 1: Pass code 65 • Step 2: Use an anonymous class 66
Step 3: Use lambda expressions 66 • Step 4: Use
method references 67

CONTENTS xi

3.8 Useful methods to compose lambda expressions 67
Composing Comparators 67* Composing Predicates 68
Composing Functions 68

3.9 Similar ideas from mathematics 70
Integration 70 * Connecting to Java 8 lambdas 72

t JV\TT*ON.*!-*TYLE ' 1 • • (JESSING

Introducing streams 77

4.1 What are streams? 78
4.2 Getting started with streams 81
4.3 Streams vs. collections 84

Traversable only once 86 * External vs. internal iteration 86

4.4 Stream operations 88
Intermediate operations 89 * Terminal operations 90
Working with streams 90

4.5 Summary 91

5.1 Filtering and slicing 93
Filtering with a predicate 93 * Filtering unique elements 94
Truncating a stream 94 * Skipping elements 95

5.2 Mapping 96
Applying a function to each element of a stream 96
Flattening streams 97

5.3 Finding and matching 100
Checking to see if a predicate matches at least one element 100
Checking to see if a predicate matches all elements 101
Finding an element 101 • Finding the first element 102

5.4 Reducing 103
Summing the elements 103 * Maximum and minimum 105

5.5 Putting it all into practice 108
The domain: Traders and Transactions 109 * Solutions 110

5.6 Numeric streams 112
Primitive stream specializations 112 * Numeric ranges 114
Putting numerical streams into practice: Pythagorean triples 114

3.10 Summary 72

Working with, streams 92

CONTENTS

5.7 Building streams 117
Streams from values 117 * Streams from arrays 117
Streams from files 117* Streams from functions: creating
infinite streams! 118

5.8 Summary 121

Collecting data with streams 123

6.1 Collectors in a nutshell 125
Collectors as advanced reductions 125
Predefined collectors 126

6.2 Reducing and summarizing 126
Finding maximum and minimum in a stream of values 127
Summarization 128 * foining Strings 129
Generalized summarization with reduction 130

6.3 Grouping 134
Multilevel grouping 135 * Collecting data in subgroups 137

6.4 Partitioning 140
Advantages of partitioning 141 * Partitioning numbers into
prime and nonprime 142

6.5 The Collector interface 145
Making sense of the methods declared by Collector interface 146
Putting them all together 149

6.6 Developing your own collector for
better performance 151
Divide only by prime numbers 151
Comparing collectors' performances 155

6.7 Summary 156

W Parallel data processing and performance 158

7.1 Parallel streams 159
Turning a sequential stream into a parallel one 160
Measuring stream performance 162 * Using parallel
streams correctly 165 * Using parallel streams effectively 166

7.2 The fork/join framework 168
Working with RecursiveTask 168* Best practices for using
the fork/join framework 172 * Work stealing 173

CONTENTS xiii

7.3 Spliterator 174
The splitting process 175 • Implementing your
own Spliterator 176

7.4 Summary 182

fMkr 3 EFFECTIVE JAVA 8 PROGRAMMING 183

Refactoring, testing, and debugging 185
8.1 Refactoring for improved readability and flexibility 186

Improving code readability 186 • From anonymous classes
to lambda expressions 186 • From lambda expressions to
method references 188 • From imperative data processing
to Streams 189 • Improving code flexibility 190

8.2 Refactoring object-oriented design patterns
with lambdas 192
Strategy 192 • Template method 194 • Observer 195
Chain of responsibility 197 • Factory 199

8.3 Testing lambdas 200
Testing the behavior of a visible lambda 201
Focusing on the behavior of the method using a lambda 201
Pulling complex lambdas into separate methods 202
Testing high-order functions 202

8.4 Debugging 203
Examining the stack trace 203 • Logging information 205

8.5 Summary 206

Default methods 207

9.1 Evolving APIs 210
API version 1 210 • API version 2 211

9.2 Default methods in a nutshell 213
9.3 Usage patterns for default methods 215

Optional methods 215 • Multiple inheritance of behavior 215

9.4 Resolution rules 219
Three resolution rules to know 219 • Most specific default-
providing interface wins 220 • Conflicts and explicit
disambiguation 221 • Diamond problem 223

9.5 Summary 224

CONTENTS

Using Optional as a better alternative to null 225

10.1 How do you model the absence of a value? 226
Reducing NullPointerExceptions with defensive checking 227
Problems with null 228 • What are the alternatives to null
in other languages ? 229

10.2 Introducing the Optional class 230
10.3 Patterns for adopting Optional 231

Creating Optional objects 231 • Extracting and transforming
values from optionals with map 232 " Chaining Optional
objects with flatMap 233 * Default actions and unwrapping
an optional 236 • Combining two optionals 237
Rejecting certain values with filter 238

10.4 Practical examples of using Optional 240
Wrapping a potentially null value in an optional 240
Exceptions vs. Optional 241 " Putting it all together 242

10.5 Summary 243

CompletableFuture: composable asynchronous
programming 245

11.1 Futures 247
Futures limitations 248 • Using CompletableFutures to build
an asynchronous application 249

11.2 Implementing an asynchronous API 250
Converting a synchronous method into an asynchronous one 251
Dealing with errors 253

11.3 Make your code non-blocking 254
Parallelizing requests using a parallel Stream 255
Making asynchronous requests with CompletableFutures 256
Looking for the solution that scales better 258
Using a custom Executor 259

11.4 Pipelining asynchronous tasks 261
Implementing a discount service 262 • Using the
Discount service 263 • Composing synchronous and
asynchronous operations 264 * Combining two
CompletableFutures—dependent and independent 266
Reflecting on Future vs. CompletableFuture 267

CONTENTS xv

12

11.5 Reacting to a CompletableFuture completion 269
Refactoring the best-price-finder application 269
Putting it to work 271

11.6 Summary 272

New Date and Time API 273
12.1 LocalDate, LocalTime, Instant, Duration,

and Period 274
Working with LocalDate and LocalTime 275 * Combining a date
and a time 276 • Instant: a date and time for machines 276
Defining a Duration or a Period 277

12.2 Manipulating, parsing, and formatting dates 279
Working with TemporalAdjusters 280 • Printing and parsing
date-time objects 283

12.3 Working with different time zones and calendars 285
Fixed offset from UTC/Greenwich 286 • Using alternative
calendar systems 286

12.4 Summary 287

PART 4 BEYOND JAVA 8 289

13

14

Thinking functionally 291

13.1 Implementing and maintaining systems 292
Shared mutable data 292 * Declarative programming 293
Why functional programming? 294

13.2 What's functional programming? 294
Functional-style Java 295 • Referential transparency 297
Object-oriented vs. functional-style programming 298
Functional style in practice 298

13.3 Recursion vs. iteration 300
13.4 Summary 304

Functional programming techniques 305
14.1 Functions everywhere 306

Higher-order functions 306 • Currying 307
14.2 Persistent data structures 309

Destructive updates vs. functional 309 • Another example
with Trees 310 * Using a functional approach 312

xvi CONTENTS

14.3 Lazy evaluation with streams 314
Self-defining stream 314 • Your awn lazy list 317

14.4 Pattern matching 321
Visitor design pattern 322 * Pattern matching to the rescue 322

14.5 Miscellany 325
Caching or memoization 325 • What does "return the same
object"mean? 327 • Combinators 327

14.6 Summary 328

Blending OOP and FP: comparingjava 8 and Scala 329

15.1 Introduction to Scala 330
Hello beer 330 • Basic data structures: List, Set, Map, Tuple,
Stream, Option 332

15.2 Functions 337
First-class functions in Scala 337 " Anonymous functions
and closures 338 • Currying 339

15.3 Classes and traits 341
Less verbosity with Scala classes 341 • Scala traits vs.
fava 8 interfaces 342

15.4 Summary 343

Conclusions and where next for Java 344
16.1 Review of Java 8 features 344

Behavior parameterization (lambdas and method references) 345
Streams 346 • CompletableFuture 346 • Optional 347
Default methods 347

16.2 What's ahead for Java? 348
Collections 348 • Type system enhancements 348
Pattern matching 350 • Richer forms of generics 351
Deeper support for immutability 353 • Value types 353

16.3 The final word 357

appendix A Miscellaneous language updates 358
appendix B Miscellaneous library updates 362
appendix C Performing multiple operations in parallel on a stream 370
appendix D Lambdas and JVM bytecode 379

index 385

