Ju-Yi Yen • Marc Yor

Local Times and Excursion Theory for Brownian Motion

A Tale of Wiener and Itô Measures

Contents

1	Prere	equisites	1
	1.1	Brownian Motion	1
	1.2	Some Extensions	2
	1.3	BM as a Continuous Martingale	2
	1.4	Girsanov's Theorem	4
	1.5	Brownian Bridge	5
	1.6	The BES(3) Process as a Doob <i>h</i> -Transform of BM	7
	1.7	The Beta–Gamma Algebra	7
	1.8	The Law of the Maximum of a Positive Continuous	
		Local Martingale, Which Converges to 0	8
	1.9	A First Taste of Enlargement Formulae	9
	1.10	Kolmogorov's Continuity Criterion	9
	Refer	rences	10

Part I Local Times of Continuous Semimartingales

2	The l	Existence and Regularity of Semimartingale Local Times	13
	2.1	From Itô's Formula to the Occupation Time Formula	13
	2.2	Regularity of Occupation Times	14
	2.3	Occupation Times Are Local Times	18
	2.4	Local Times and the Balayage Formula	19
	2.5	Some Simple Martingales	22
	2.6	The Existence of Principal Values Related to Brownian	
		Local Times	23
	2.7	Some Extensions of Itô's Formula	24
	Refer	ences	27
3	Lévy	's Representation of Reflecting BM and Pitman's	
	Representation of BES(3)		29
	3.1	Lévy's Identity in Law: The Local Time	
		as a Supremum Process	29
	3.2	A Solution to Skorokhod's Embedding Problem	30

	3.3	Pitman's Representation of BES(3)	33
	3.4	A Relation Between (The Above Solution to)	
		Skorokhod's Problem and the Balayage Formula	35
	3.5	An Extension of Pitman's Theorem to Brownian	
		Motion with Drift	36
	3.6	Skorokhod's Lemma and the Balayage Formula	38
	3.7	Seshadri's Remark on the Joint Law of (S_t, B_t)	40
	3.8	A Combination of Skorokhod's Lemma and Time-Substitution	41
	Refe	rences	41
4	Paul	Lévy's Arcsine Laws	43
	4.1	Two Brownian Functionals with the Arcsine Distribution	43
	4.2	Two Independent Reflected Brownian Motions	44
	4.3	Random Brownian Scaling and Absolute Continuity Properties	45
	4.4	The Second Arcsine Law	48
	4.5	The Time Spent in \mathbb{R}_+ by a Brownian Bridge	50
	4.6	The Law of A_T^+ for More Random Times T and Other	
		Processes than BM	51
	Refe	rences	53
Par	t II	Excursion Theory for Brownian Paths	
5	Brow	vnian Excursion Theory: A First Approach	57
	51	Some Motivations	57

9	DIV	man Excursion Theory. A Physicappioach	57
	5.1	Some Motivations	57
	5.2	Itô's Theorem on Excursions	59
	5.3	Two Master Formulae (A) and (M)	60
	5.4	Relationship Between Certain Lévy Measures	
		and Itô Measure n	61
	5.5	Two Applications of (A) and (M)	62
	Refe	rences	64
6	Two	Descriptions of n: Itô's and Williams'	65
	6.1	Statements	65
	6.2	An Agreement Formula	67
	6.3	n is a Markovian Measure	68
	6.4	Proof of Itô's Disintegration (b) in Sect. 6.1	68
	6.5	Proof of the Formula (6.4.4) for $\Pi^r(\Gamma)$	70
	6.6	Proof of the Markovianity of n	72
	6.7	The Formula for Entrance Laws	74
	6.8	A (Partial) Proof of Williams' Representation of n	75
	Refe	rences	77
7	A Si	mple Path Decomposition of Brownian Motion	
	Arou	and Time $t = 1$	79
	7.1	Another Representation of the Brownian Bridge	79
	7.2	The Normalized Brownian Excursion	80

	7.3 The Brownian Meander	81
	7.4 The Brownian Co-meander	83
	7.5 Two Isolation Formulae	85
	7.6 Azéma's Martingale and the Brownian Meander	88
	References	91
8	The Laws of, and Conditioning with Respect to.	
Ť	Last Passage Times	93
	8.1 The Bessel Case	93
	8.2 General Transient Diffusions	93
	8.3 Absolute Continuity Relationships up to γ_v	96
	8.4 Applications	97
	8.4.1 BM with drift considered up to last passage time	97
	8.4.2 BES process up to last passage time	98
	8.4.3 First hit of 0 by Ornstein–Uhlenbeck process	99
	References	100
9	Integral Representations Relating W and n	101
	9.1 Statement of the Main Theorem	101
	9.2 Proof of the Theorem	102
	9.3 Proof of (9.2.1)	103
	References	104
-		
Par	III Some Applications of Excursion Theory	
10	The Feynman-Kac Formula and Excursion Theory	107
	10.1 Statement of the FK Formula	107
	10.2 Proof of FK via Excursion Theory	108
	References	110
11	Some Identities in Law	111
11	11.1 On Linear Combinations of Defloated DM and the Local Time	111
	11.1 On Linear Combinations of Reflected BW and its Local Time	111
	11.2 On the joint Laws of (S_h, I_h, L_h) and (S_1, I_1, L_1)	114
	11.3 Knight's Identity in Law	118
	11.4 The Foldes-Revesz Identity	120
	11.5 Cauchy Principal Value of Brownian Local Times	122
	11.6 The Agreement Formula and the Functional Equation	
	of the Riemann ζ Function	123
	11.7 On Ranked Lengths of Excursions	126
	References	130
Gei	eral References	133
		125
Ind	Х	133