Ju-Yi Yen • Marc Yor

Local Times and Excursion Theory for Brownian Motion

A Tale of Wiener and Itô Measures

Springer

Contents

1 Prerequisites 1
1.1 Brownian Motion 1
1.2 Some Extensions 2
1.3 BM as a Continuous Martingale 2
1.4 Girsanov’s Theorem 4
1.5 Brownian Bridge 5
1.6 The BES(3) Process as a Doob h-Transform of BM 7
1.7 The Beta-Gamma Algebra 7
1.8 The Law of the Maximum of a Positive Continuous Local Martingale, Which Converges to 0 8
1.9 A First Taste of Enlargement Formulae 9
1.10 Kolmogorov's Continuity Criterion 9
References 10
Part I Local Times of Continuous Semimartingales
2 The Existence and Regularity of Semimartingale Local Times 13
2.1 From Itô's Formula to the Occupation Time Formula 13
2.2 Regularity of Occupation Times 14
2.3 Occupation Times Are Local Times 18
2.4 Local Times and the Balayage Formula 19
2.5 Some Simple Martingales 22
2.6 The Existence of Principal Values Related to Brownian Local Times 23
2.7 Some Extensions of Itô's Formula 24
References 27
3 Lévy's Representation of Reflecting BM and Pitman's Representation of BES(3) 29
3.1 Lévy's Identity in Law: The Local Time as a Supremum Process 29
3.2 A Solution to Skorokhod's Embedding Problem 30
3.3 Pitman's Representation of BES(3) 33
3.4 A Relation Between (The Above Solution to) Skorokhod's Problem and the Balayage Formula 35
3.5 An Extension of Pitman's Theorem to Brownian Motion with Drift 36
3.6 Skorokhod's Lemma and the Balayage Formula 38
3.7 Seshadri's Remark on the Joint Law of (S_{t}, B_{t}) 40
3.8 A Combination of Skorokhod's Lemma and Time-Substitution 41
References 41
4 Paul Lévy's Arcsine Laws 43
4.1 Two Brownian Functionals with the Arcsine Distribution 43
4.2 Two Independent Reflected Brownian Motions 44
4.3 Random Brownian Scaling and Absolute Continuity Properties. 45
4.4 The Second Arcsine Law 48
4.5 The Time Spent in \mathbb{R}_{+}by a Brownian Bridge 50
4.6 The Law of A_{T}^{+}for More Random Times T and Other Processes than BM 51
References 53
Part II Excursion Theory for Brownian Paths
5 Brownian Excursion Theory: A First Approach 57
5.1 Some Motivations 57
5.2 Itô's Theorem on Excursions 59
5.3 Two Master Formulae (A) and (M) 60
5.4 Relationship Between Certain Lévy Measures and Itô Measure n 61
5.5 Two Applications of (A) and (M) 62
References 64
6 Two Descriptions of n: Itô's and Williams' 65
6.1 Statements 65
6.2 An Agreement Formula 67
6.3 n is a Markovian Measure 68
6.4 Proof of Itô's Disintegration (b) in Sect. 6.1 68
6.5 Proof of the Formula (6.4.4) for $\Pi^{r}(\Gamma)$ 70
6.6 Proof of the Markovianity of n 72
6.7 The Formula for Entrance Laws 74
6.8 A (Partial) Proof of Williams' Representation of n. 75
References 77
7 A Simple Path Decomposition of Brownian Motion Around Time $t=1$ 79
7.1 Another Representation of the Brownian Bridge 79
7.2 The Normalized Brownian Excursion 80
7.3 The Brownian Meander 81
7.4 The Brownian Co-meander 83
7.5 Two Isolation Formulae 85
7.6 Azéma's Martingale and the Brownian Meander 88
References 91
8 The Laws of, and Conditioning with Respect to, Last Passage Times 93
8.1 The Bessel Case 93
8.2 General Transient Diffusions 93
8.3 Absolute Continuity Relationships up to γ_{y} 96
8.4 Applications 97
8.4.1 BM with drift considered up to last passage time 97
8.4.2 BES process up to last passage time 98
8.4.3 First hit of 0 by Ornstein-Uhlenbeck process 99
References 100
9 Integral Representations Relating W and n 101
9.1 Statement of the Main Theorem 101
9.2 Proof of the Theorem 102
9.3 Proof of (9.2.1) 103
References 104
Part III Some Applications of Excursion Theory
10 The Feynman-Kac Formula and Excursion Theory 107
10.1 Statement of the FK Formula 107
10.2 Proof of FK via Excursion Theory 108
References 110
11 Some Identities in Law 111
11.1 On Linear Combinations of Reflected BM and Its Local Time 111
11.2 On the Joint Laws of (S_{b}, I_{b}, L_{h}) and (S_{1}, I_{1}, L_{1}) 114
11.3 Knight's Identity in Law 118
11.4 The Földes-Révész Identity 120
11.5 Cauchy Principal Value of Brownian Local Times 122
11.6 The Agreement Formula and the Functional Equation of the Riemann ζ Function 123
11.7 On Ranked Lengths of Excursions 126
References 130
General References 133
Index 135

