2120-9501

GIS Basics

Stephen Wise

London and New York

Contents

	List of illustrations Preface Acknowledgements		
1	Introduction		
	 1.1 How computers solve problems 2 1.2 How computers store spatial data: vector and raster data models 5 1.3 Structure of the book 11 1.4 Pseudo-code 14 Further reading 18 		
2	Vector data structures		
	 2.1 Storing points and lines 20 2.2 Storing area boundaries 26 2.3 Storing area boundaries: the topological approach 29 2.4 So what is topology? 32 2.5 And how does it help? The example of DIME 35 Further reading 38 		
3	Vector algorithms for lines		
	 3.1 Simple line intersection algorithm 40 3.2 Why the simple line intersection algorithm won't work a better algorithm 45 3.3 Dealing with wiggly lines 49 3.4 Calculations on lines: how long is a piece of string? 54 Further reading 59 	:	

v	i C	Contents
•		

/1	Contents				
4	Vector algorithms for areas 65	1			
	 4.1 Calculations on areas: single polygons 61 4.2 Calculations on areas: multiple polygons 64 4.3 Point in polygon: simple algorithm 66 4.4 and back to topology for a better algorithm 71 Further reading 75 				
5	The efficiency of algorithms 70				
	 5.1 How is algorithm efficiency measured? 76 5.2 The efficiency of the line intersection algorithm 79 5.3 More on algorithm efficiency 81 Further reading 83 				
6	Raster data structures 85	5			
	6.1 Raster data structures: the array 866.2 Saving space: run length encoding and quadtrees 90Further reading 95				
7	Raster algorithms 96				
	 7.1 Raster algorithms: attribute query for run length encoded data 96 7.2 Raster algorithms: attribute query for quadtrees 99 7.3 Raster algorithms: area calculations 106 Further reading 111 				
8	Spatial indexing 113				
	 8.1 Binary search tree 113 8.2 Indexing data with a k-d tree 118 8.3 Indexing vector data using a quadtree 122 8.4 Indexing raster data using Morton order 127 Further reading 131 				
9	Data structures for surfaces 133	3			
	 9.1 Data models for surfaces 134 9.2 Algorithms for creating grid surface models 139 9.3 Algorithms for creating a triangulated irregular network 144 9.4 Grid creation revisited 150 Further reading 154 				

		Contents	vii		
10	Algor	ithms for surfaces	155		
	10.1	Elevation, slope and aspect 155			
	10.2	Hydrological analysis using a TIN 162			
	10.3	Determining flow direction using a gridded DEM 165			
	10.4	Using the flow directions for hydrological analysis 169			
Further reading 177					
11 Data structures and algorithms for networks		structures and algorithms for networks	178		
	11.1	Networks in vector and raster 178			
	11.2	Shortest path algorithm 180			
	11.3	Data structures for network data 187			
	11.4	The travelling salesman problem 195			
	Further reading 203				
Conclusion Glossary Bibliography		usion	204		
		ary	205		
		graphy	211		
	Index		216		