AMS/IP

Studies in Advanced Mathematics

Volume 32

Lectures on Mean Curvature Flows

Xi-Ping Zhu

American Mathematical Society

International Press

Contents

1	The	e curve snortening now for convex curves	1		
	1.1	Shrinking to a Point	2		
	1.2	Asymptotic Behavior	6		
2	The Short Time Existence and The Evolution Equation of Cur-				
		ires	15		
	2.1	Local Existence	17		
	2.2	Evolution of Metric and Curvature	18		
	2.3	Pinching Estimate	20		
3	Contraction of Convex Hypersurfaces				
	3.1	Some Facts on Convex Hypersurface	25		
	3.2	MCF FOR CONVEX HYPERSURFACES	29		
4	Mo	notonicity and Self-Similar Solutions	35		
	4.1	Type I Limits	35		
	4.2	The Classification of Self-similar Solutions	39		
5	Evolution of Embedded Curves or Surfaces (I)				
	5.1	Isoperimetric Estimates	48		
	5.2	Blow-up Argument	50		
	5.3	Convexity Theorem	52		
6	Evolution of Embedded Curves and Surfaces (II)				
	6.1	Curves with Finite Total Absolute Curvature	.55		
	6.2	Long Time Existence for Complete Curves	60		
7	Evolution of Embedded Curves and Surfaces (III)				
	7.1	The Evolution Equation of Gradient Function	68		
	7.2	Gradient Estimates	69		
	7.3	Curvature Estimates	71		
	7.4	Long Time Existence for Entire Graphs	75		
8	Convexity Estimates for Mean Convex Surfaces				
	8.1	Evolution Equations	78		
	8.2	L^p Estimates	80		
	8.3	De Giorgi Iteration Argument	84		

vi CONTENTS

9	Li-Yau Estimates and Type II Singularities		89
	9.1	Translating Soliton	90
	9.2	Li-Yau Type Inequality	91
		Type II Limits	
10		Mean Curvature Flow in Riemannian Manifolds	101
	10.1	Hypersurfaces in Riemannian Manifolds	101
	10.2	Evolution Equations	104
11	Con	tracting Convex Hypersurfaces in Riemannian Manifolds	109
	11.1	The Pinching Estimates	109
	11.2	A Geometric Lemma	112
	11.3	Huisken Theorem	115
12	Defi	nition of Center of Mass for Isolated Gravitating Systems	123
	12.1	Approximately Round Surfaces	124
	12.2	Existence of Constant Mean Curvature Surfaces	128
	12.3	Center of Gravity	137
Re	efere	nces	145
Tn.	Index		