PRINCETON LECTURES IN ANALYSIS

Ι

FOURIER ANALYSIS

AN INTRODUCTION

Elias M. Stein

ย

Rami Shakarchi

PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

Contents

Fore	Foreword			
Preface				
Cha	Chapter 1. The Genesis of Fourier Analysis			
1	The vibrating string	2		
	1.1 Derivation of the wave equation	6		
	1.2 Solution to the wave equation	8		
	1.3 Example: the plucked string	17		
2	The heat equation	18		
	2.1 Derivation of the heat equation	18		
	2.2 Steady-state heat equation in the disc	20		
3	Exercises	23		
4	Problem	28		
Cha	pter 2. Basic Properties of Fourier Series	29		
1	Examples and formulation of the problem	30		
	1.1 Main definitions and some examples	34		
2	Uniqueness of Fourier series	39		
3	Convolutions	44		
4	Good kernels	48		
5	Cesàro and Abel summability: applications to Fourier series	51		
	5.1 Cesàro means and summation	51		
	5.2 Fejér's theorem	52		
	5.3 Abel means and summation	54		
	5.4 The Poisson kernel and Dirichlet's problem in the			
	unit disc	55		
6	Exercises	58		
7	Problems	65		
Cha	pter 3. Convergence of Fourier Series	69		
1	Mean-square convergence of Fourier series	70		
	1.1 Vector spaces and inner products	70		
	1.2 Proof of mean-square convergence	76		
2	Return to pointwise convergence	81		
	2.1 A local result	81		
	2.2 A continuous function with diverging Fourier series	83		

CONTEN	IT.

3	Exercises	8				
4	Problems	9.				
Cha	pter 4. Some Applications of Fourier Series	10				
1	The isoperimetric inequality	10				
2	Weyl's equidistribution theorem	10!				
3	A continuous but nowhere differentiable function					
4	The heat equation on the circle					
5	Exercises					
6	Problems	12				
Cha	pter 5. The Fourier Transform on $\mathbb R$	12{				
1	Elementary theory of the Fourier transform	13]				
	1.1 Integration of functions on the real line	131				
	1.2 Definition of the Fourier transform	13 4				
	1.3 The Schwartz space	13 4				
	1.4 The Fourier transform on S	136				
	1.5 The Fourier inversion	14(
	1.6 The Plancherel formula	142				
	1.7 Extension to functions of moderate decrease	14 4				
	1.8 The Weierstrass approximation theorem	14 4				
2	Applications to some partial differential equations	145				
	2.1 The time-dependent heat equation on the real line	145				
	2.2 The steady-state heat equation in the upper half-					
	plane	149				
3	The Poisson summation formula	153				
	3.1 Theta and zeta functions	155				
	3.2 Heat kernels	156				
	3.3 Poisson kernels	157				
4	The Heisenberg uncertainty principle	158				
5	Exercises	161				
6	Problems	169				
Cha	pter 6. The Fourier Transform on \mathbb{R}^d	175				
1	Preliminaries	176				
	1.1 Symmetries	176				
	1.2 Integration on \mathbb{R}^d	178				
2	Elementary theory of the Fourier transform	180				
3	The wave equation in $\mathbb{R}^d imes \mathbb{R}$	184				
	3.1 Solution in terms of Fourier transforms	184				
	3.2 The wave equation in $\mathbb{R}^3 \times \mathbb{R}$	189				

 \mathbf{xiv}

CON	TENTS	xv				
	3.3 The wave equation in $\mathbb{R}^2 \times \mathbb{R}$: descent-	194				
4	Radial symmetry and Bessel functions	196				
5	The Radon transform and some of its applications	198				
	5.1 The X-ray transform in \mathbb{R}^2	199				
	5.2 The Radon transform in \mathbb{R}^3	201				
	5.3 A note about plane waves	207				
6	6 Exercises					
7	7 Problems					
Cha	pter 7. Finite Fourier Analysis	218				
1	Fourier analysis on $\mathbb{Z}(N)$	219				
	1.1 The group $\mathbb{Z}(N)$	219				
	1.2 Fourier inversion theorem and Plancherel identity					
	$\text{ on } \mathbb{Z}(N)$	221				
	1.3 The fast Fourier transform	224				
2	Fourier analysis on finite abelian groups	226				
	2.1 Abelian groups	226				
	2.2 Characters	230				
	2.3 The orthogonality relations	232				
	2.4 Characters as a total family	233				
	2.5 Fourier inversion and Plancherel formula	235				
3	Exercises	236				
4	Problems					
Cha	pter 8. Dirichlet's Theorem	241				
1	A little elementary number theory	241				
	1.1 The fundamental theorem of arithmetic	241				
	1.2 The infinitude of primes	244				
2	Dirichlet's theorem	252				
	2.1 Fourier analysis, Dirichlet characters, and reduc-					
	tion of the theorem	254				
	2.2 Dirichlet <i>L</i> -functions	255				
3	Proof of the theorem	258				
	3.1 Logarithms	258				
	3.2 L-functions	261				
	3.3 Non-vanishing of the <i>L</i> -function	265				
4	Exercises	275				
5	Problems	279				
Арт	pendix: Integration	281				
1	1 Definition of the Riemann integral					

j

Statistics and

CONTEN'

	1.1	Basic properties	25
	12	Sets of measure zero and discontinuities of inte-	-
	1.4	grable functions	25
ე	N/1-1+5	gradie functions	20
2	wuu	ipie integrais	20
	2.1	The Riemann integral in \mathbb{R}^d	28
	2.2	Repeated integrals	29
	2.3	The change of variables formula	29
	2.4	Spherical coordinates	29
3	Impre	oper integrals. Integration over \mathbb{R}^d	29
	3.1	Integration of functions of moderate decrease	29
	3.2	Repeated integrals	29
	3.3	Spherical coordinates	29
Notes and References		29	
Bibliography			30 0
Symbol Glossary			