
What Is This Book About? p. 1

From Handcrafting to Automated Assembly Lines p. 1

Generative Programming p. 5

Benefits and Applicability p. 13

Analysis and Design Methods and Techniques p. 17

Domain Engineering p. 19

Why Is This Chapter Worth Reading? p. 19

What Is Domain Engineering? p. 20

Domain Analysis p. 23

Domain Design and Domain Implementation p. 24

Application Engineering p. 30

Product-Line Practices p. 30

Key Domain Engineering Concepts p. 32

Domain p. 32

Domain Scope and Scoping p. 34

Relationships between Domains p. 37

Features and Feature Models p. 38

Method Tailoring and Specialization p. 43

Survey of Domain Analysis and Domain Engineering Methods p. 44

Feature-Oriented Domain Analysis (FODA) p. 44

FODA Process p. 45

Organization Domain Modeling (ODM) p. 46

The ODM Process p. 48

Draco p. 48

Capture p. 51

Domain Analysis and Reuse Environment (DARE) p. 51

Domain-Specific Software Architecture (DSSA) Approach p. 52

Algebraic Approach p. 53

Other Approaches p. 54

Domain Engineering and Related Approaches p. 55

Historical Notes p. 56

Summary p. 57

Domain Engineering and Object-Oriented Analysis and Design p. 60

Why Is This Chapter Worth Reading? p. 60

OO Technology and Reuse p. 60

Solution Space p. 61

Problem Space p. 61

Relationship between Domain Engineering and Object-Oriented Analysis and Design 
(OOA/D) Methods

p. 64

Aspects of Integrating Domain Engineering and OOA/D Methods p. 64

Horizontal versus Vertical Methods p. 67

Selected Methods p. 69



Rational Unified Process 5.0 p. 69

OOram p. 71

Reuse-driven Software Engineering Business (RSEB) p. 73

FeatuRSEB p. 79

Domain Engineering Method for Reusable Algorithmic Libraries (DEMRAL) p. 80

Feature Modeling p. 82

Why Is This Chapter Worth Reading? p. 82

Features Revisited p. 82

Feature Modeling p. 83

Feature Models p. 86

Feature Diagrams p. 87

Mandatory Features p. 88

Optional Features p. 89

Alternative Features p. 90

Or-Features p. 91

Normalized Feature Diagrams p. 93

Expressing Commonality in Feature Diagrams p. 95

Expressing Variability in Feature Diagrams p. 95

Other Information Associated with Feature Diagrams in a Feature Model p. 96

Assigning Priorities to Variable Features p. 99

Availability Sites, Binding Sites, and Binding Modes p. 100

Sites p. 100

Availability Sites p. 100

Binding Sites and Binding Modes p. 101

Relationship between Optimizations and Availability Sites, Binding Sites, and 
Binding Modes

p. 101

Relationship between Feature Diagrams and Other Modeling Notations and 
Implementation Techniques

p. 102

Single Inheritance p. 105

Multiple Inheritance p. 107

Parameterized Inheritance p. 108

Static Parameterization p. 111

Dynamic Parameterization p. 112

Implementing Constraints p. 113

Tool Support for Feature Models p. 114

Frequently Asked Questions about Feature Diagrams p. 116

Feature Modeling Process p. 119

How to Find Features p. 119

Role of Variability in Modeling p. 123

Separation of Concerns p. 123

Decomposition Techniques p. 125

Variability in Modeling p. 128



The Process of Generative Programming p. 131

Why Is This Chapter Worth Reading? p. 131

Generative Domain Models p. 131

Main Development Steps in Generative Programming p. 134

Adapting Domain Engineering for Generative Programming p. 135

Domain-Specific Languages p. 137

DEMRAL: Example of a Domain Engineering Method for Generative Programming p. 142

Outline of DEMRAL p. 144

Domain Analysis p. 146

Domain Definition p. 146

Domain Modeling p. 148

Identification of Key Concepts p. 149

Feature Modeling p. 151

Feature Starter Set for ADTs p. 151

Feature Starter Set for Algorithms p. 154

Domain Design p. 155

Scope Domain Model for Implementation p. 155

Identify Packages p. 156

Develop Target Architectures and Identify the Implementation Components p. 156

Identify User DSLs p. 156

Identify Interactions between DSLs p. 157

Specify DSLs and Their Translation p. 157

Configuration DSLs p. 158

Expression DSLs p. 162

Domain Implementation p. 164

Implementation Technologies p. 165

Generic Programming p. 167

Why Is This Chapter Worth Reading? p. 167

What Is Generic Programming? p. 167

Generic versus Generative Programming p. 170

Generic Parameters p. 171

Parametric versus Subtype Polymorphism p. 173

Genericity in Java p. 176

Bounded versus Unbounded Polymorphism p. 184

A Fresh Look at Polymorphism p. 186

Parameterized Components p. 190

Parameterized Programming p. 192

Types, Interfaces, and Specifications p. 193

Adapters p. 195

Vertical and Horizontal Parameters p. 197

Module Expressions p. 200



C++ Standard Template Library p. 201

Iterators p. 202

Freestanding Functions versus Member Functions p. 203

Generic Methodology p. 205

Historical Notes p. 209

Component-Oriented Template-Based C++ Programming Techniques p. 211

Why Is This Chapter Worth Reading? p. 211

Types of System Configuration p. 212

C++ Support for Dynamic Configuration p. 213

C++ Support for Static Configuration p. 213

Static Typing p. 214

Static Binding p. 214

Inlining p. 214

Templates p. 218

Parameterized Inheritance p. 221

Typedefs p. 221

Member Types p. 221

Nested Classes p. 222

Prohibiting Certain Template Instantiations p. 222

Static versus Dynamic Parameterization p. 224

Wrappers Based on Parameterized Inheritance p. 231

Template Method Based on Parameterized Inheritance p. 231

Parameterizing Binding Mode p. 234

Consistent Parameterization of Multiple Components p. 236

Static Interactions between Components p. 236

Components with Influence p. 238

Components under Influence p. 240

Structured Configurations p. 243

Recursive Components p. 245

Intelligent Configuration p. 248

Aspect-Oriented Programming p. 251

Why Is This Chapter Worth Reading? p. 251

What Is Aspect-Oriented Programming? p. 252

Aspect-Oriented Decomposition Approaches p. 254

Subject-Oriented Programming p. 254

Composition Filters p. 256

Demeter / Adaptive Programming p. 259

Aspect-Oriented Programming p. 262

How Aspects Arise p. 264

Composition Mechanisms p. 267

Requirements on Composition Mechanisms p. 267



Minimal Coupling p. 267

Different Binding Times and Modes p. 270

Noninvasive Adaptability p. 272

Example: Synchronizing a Bounded Buffer p. 275

"Tangled" Synchronized Stack p. 278

Separating Synchronization Using Design Patterns p. 281

Separating Synchronization Using SOP p. 287

Some Problems with Design Patterns and Some Solutions p. 292

Object Schizophrenia p. 294

Preplarming Problem p. 295

Traceability Problem p. 295

Implementing Noninvasive, Dynamic Composition in Smalltalk p. 296

Model of the Composition p. 296

Composition API p. 297

Instance-Specific Extension Protocol p. 298

Defining Methods in Instances p. 299

Adding Instance Variables to Instances p. 301

Kinds of Crosscutting p. 303

How to Express Aspects in Programming Languages p. 305

Separating Synchronization Using AspectJ Cool p. 306

Implementing Dynamic Cool in Smalltalk p. 310

Example: Synchronizing an Assembly System p. 310

Architecture of the Smalltalk Implementation of Dynamic Cool p. 315

Implementation Technologies for Aspect-Oriented Programming p. 317

Technologies for Implementing Aspect-Specific Abstractions p. 317

Technologies for Implementing Weaving p. 321

AOP and Specialized Language Extensions p. 328

AOP and Active Libraries p. 328

Final Remarks p. 331

Generators p. 332

Why Is This Chapter Worth Reading? p. 332

What Are Generators? p. 333

Transformational Model of Software Development p. 335

Technologies for Building Generators p. 339

Compositional versus Transformational Generators p. 341

Kinds of Transformations p. 344

Compiler Transformations p. 344

Refinements p. 344

Optimizations p. 345

Source-to-Source Transformations p. 348

Transformation Systems p. 350



Scheduling Transformations p. 352

Existing Transformation Systems and Their Applications p. 355

Selected Approaches to Generation p. 357

Draco p. 357

GenVoca p. 363

Example: Applying GenVoca to the Domain of Data Containers p. 364

GenVoca Model p. 366

Defining Realms and Layers in P++ p. 372

Implementing GenVoca Layers in C++ p. 375

Composition Validation p. 385

Transformations and GenVoca p. 387

Frameworks and GenVoca p. 388

Approaches Based on Algebraic Specifications p. 389

Static Metaprogramming in C++ p. 397

Why Is This Chapter Worth Reading? p. 397

What Is Metaprogramming? p. 398

A Quick Tour of Metaprogramming p. 399

Static Metaprogramming p. 405

C++ As a Two-Level Language p. 406

Functional Flavor of the Static Level p. 410

Class Templates As Functions p. 410

Integers and Types As Data p. 411

Symbolic Names Instead of Variables p. 411

Constant Initialization and typedef-Statements Instead of Assignment p. 411

Template Recursion Instead of Loops p. 412

Conditional Operator and Template Specialization As Conditional Constructs p. 413

Template Metaprogramming p. 413

Template Metafunctions p. 414

Metafunctions As Arguments and Return Values of Other Metafunctions p. 416

Representing Metainformation p. 418

Member Traits p. 419

Traits Classes p. 420

Traits Templates p. 421

Example: Using Template Metafunctions and Traits Templates to Implement Type 
Promotions

p. 425

Compile-Time Lists and Trees As Nested Templates p. 427

Compile-Time Control Structures p. 433

Explicit Selection Constructs (? : , IF[], and SWITCH[]) p. 433

Implementing IF[] without Partial Template Specialization p. 434

Switch Construct (SWITCH[]) p. 436

Taking Advantage of Lazy Behavior p. 438

SWITCH[] without Partial Template Specialization p. 444



Template Recursion As a Looping Construct p. 444

Explicit Looping Constructs (WHILE[], DO[], and FOR[]) p. 451

While-Loop (WHILE[]) p. 451

Do-Loop (DO[]) p. 455

For-Loop (FOR[]) p. 459

Code Generation p. 462

Simple Code Selection p. 462

Composing Templates p. 464

Generators Based on Expression Templates p. 464

Recursive Code Expansion p. 465

Explicit Loops for Generating Code (EWHILE[], EDO[], and EFOR[]) p. 473

EWHILE[] p. 473

EDO[] p. 476

EFOR[] p. 477

Nesting Static E-Loops p. 479

Example: Using Static Execute Loops to Test Metafunctions p. 487

Partial Evaluation in C++ p. 493

Workarounds for Partial Template Specialization p. 497

Problems of Template Metaprogramming p. 499

Historical Notes p. 499

Intentional Programming p. 503

Why Is This Chapter Worth Reading? p. 503

What Is Intentional Programming? p. 504

Technology behind IP p. 510

System Architecture p. 510

Representing Programs in IP: The Source Graph p. 512

Treelike Structures p. 513

Graphlike Structures p. 513

Source Graphs: The Big Picture p. 516

The Essence of Source Graphs: Abstraction Sharing and Parameterization p. 518

Source Graph + Methods = Active Source p. 518

Kinds of Methods p. 519

Working with the IP Programming Environment p. 522

Editing p. 524

Further Capabilities of the IP Editor p. 528

Extending the IP System with New Intentions p. 537

Advanced Topics p. 541

Questions, Methods, and a Frameworklike Organization p. 542

Source-Pattem-Based Polymorphism p. 543

Methods As Visitors p. 545

Asking Questions Synchronously and Asynchronously p. 546



Reduction p. 547

The Philosophy behind IP p. 551

Why Do We Need Extendible Programming Environments? or What Is the Problem with Fixed 
Programming Languages?

p. 551

Problems with General-Purpose Languages and Conventional Libraries p. 551

Problems with Comprehensive Application-Specific Languages p. 553

The IP Solution: An Extendible Programming Environment p. 555

Moving Focus from Fixed Languages to Language Features and the Emergence of an 
Intention Market

p. 556

Intentional Programming and Component-Based Development p. 557

Frequently Asked Questions p. 559

Summary p. 566

Application Examples p. 569

List Container p. 571

Why Is This Chapter Worth Reading? p. 571

Overview p. 571

Domain Analysis p. 572

Domain Design p. 573

Implementation Components p. 577

Manual Assembly p. 583

Specifying Lists p. 586

The Generator p. 586

Extensions p. 590

Bank Account p. 593

Why Is This Chapter Worth Reading? p. 593

The Successful Programming Shop p. 593

Design Pattems, Frameworks, and Components p. 596

Domain Engineering and Generative Programming p. 597

Feature Modeling p. 599

Architecture Design p. 600

Implementation Components p. 603

Configurable Class Hierarchies p. 610

Designing a Domain-Specific Language p. 612

Bank Account Generator p. 619

Testing Generators and Their Products p. 623

Generative Matrix Computation Library (GMCL) p. 624

Why Is This Chapter Worth Reading? p. 624

Why Matrix Computations? p. 625

Domain Analysis p. 626

Domain Definition p. 626

Domain Modeling p. 628

Domain Design and Implementation p. 634



Matrix Type Generation p. 638

Target Architecture and Matrix Implementation Components p. 639

Matrix Configuration DSL p. 654

Matrix Configuration Generator p. 661

Configuration DSL Parser p. 664

Assigning Defaults to DSL Features p. 666

Matrix Component Assembler p. 672

Generating Code for Matrix Expressions p. 678

Evaluating Matrix Expressions p. 678

Modeling the Elementwise Expression Evaluation Using Objects p. 680

Overview of the Implementation p. 685

Matrix Operator Templates p. 686

Matrix Expression Templates p. 690

Matrix Cache p. 696

Generating getElement p. 698

Metafunctions for Computing Result Types of Expressions p. 701

Generating Matrix Assignment p. 706

Lessons Learned p. 708

Problems with Template Metaprograrnming p. 710

Implementing the Matrix Component in IP p. 713

Appendices p. 719

Conceptual Modeling p. 721

What Are Concepts? p. 721

Theories of Concepts p. 722

Basic Terminology p. 723

The Classical View p. 724

The Probabilistic View p. 727

The Exemplar View p. 728

Summary of the Three Views p. 728

Important Issues Concerning Concepts p. 730

Stability of Concepts p. 730

Concept Core p. 731

Informational Contents of Features p. 732

Feature Composition and Relationships between Features p. 732

Quality of Features p. 733

Abstraction and Generalization p. 733

Conceptual Modeling, Object-Orientation, and Software Reuse p. 736

Instance-Specific Extension Protocol for Smalltalk p. 738

Protocol for Attaching Listener Objects in Smalltalk p. 741

Glossary of Matrix Computation Terms p. 746

Metafunction for Evaluating Dependency Tables p. 749



Glossary of Generative Programming Terms p. 754

References p. 757

Index p. 799

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.


