

Dipl.-Ing. Dagmar Meyer, Baiersdorf

Vergleich klassischer und moderner Regelverfahren am Beispiel einer Schachtförderanlage

Reihe 8: Meß-, Steuerungsund Regelungstechnik

Nr. 551

Inhalt

1	Übe	rsicht	1
2	Einl	eitung	3
3	Dyn	amisches Modell einer Förderanlage	5
	3.1 3.2 3.3	Konstruktiver Aufbau. Beschreibung der Seildynamik 3.2.1 Vergleich verschiedener Modellansätze Vereinfachtes Streckenmodell 3.3.1 Differentialgleichungen 3.3.2 Lagerreibung. 3.3.3 Berechnung der arbeitspunktabhängigen Koeffizienten.	6 9 11 12
	3.4	Ubertragungsverhalten	13
4	Lab	ornachbildung der Förderanlage	16
	4.1 4.2	Versuchsaufbau Lastsimulation 4.2.1 Anpassung des Streckenmodells an den	
	4.3	Versuchsantrieb	21
5	Iden	tifizierung eines Streckenmodells	25
	5.1 5.2	Wahl eines geeigneten Anregungssignals Identifikationsverfahren 5.2.1 Methode der kleinsten Fehlerquadrate 5.2.2 Identifizierung mit gestörtem Ausgangssignal 5.2.3 Ergebnisse	25 30 30
6	Entw	vurf robuster Regelungen	35
	6.1	Struktur der H₂-Entwurfsaufgabe Grundlagen des H∞-optimalen Reglers 6.2.1 Beschreibung der Anforderungen durch die H∞-Norm 6.2.2 Entwurfsziele 6.2.2.1 Regelfehler 6.2.2.2 Stellgröße 6.2.2.3 Robustheit	36 38 39 40

		6.2.3 Wichtungsfunktionen	42
		6.2.3.1 Wichtung der Stellgröße	43
		6.2.3.2 Unterdrückung von Meßwertstörungen	46
		6.2.3.3 Wichtung der Regelabweichung	47
		6.2.3.4 Auslegung auf Störverhalten	49
		6.2.4 Struktur der Entwurfsaufgabe	49
	6.3	Berechnung und Struktur des Reglers	51
	0.5	6.3.1 Berechnung des H ₂ -optimalen Reglers	52
		6.3.2 Berechnung des H∞-optimalen Reglers	53
	6.4	Regelung der Schachtförderanlage	54
		6.4.1 Realisierte Regelkonzepte	
		6.4.2 Robustheitsanforderungen	
		6.4.3 Kaskadenregelung	
		6.4.4 Lageregelung mit Vorsteuerung durch »inverses	
		Modell«	62
	6.5	Bewertung der Ergebnisse	
7	Entv	wurf einer Fuzzy-Regelung	67
	7.1	Fuzzy Control: Grundlagen	
		7.1.1 Unscharfe Mengen	67
		7.1.2 Linguistische Aussagen und Fuzzy-Operatoren	
		7.1.3 Linguistische Regeln	
		7.1.4 Anwendung der Fuzzy-Logik im Fuzzy-Regler	
	7.2	Fuzzy-PI-Drehzahlregelung	
	7.3	Fuzzy-Kaskade ohne Führungsgrößengenerator	
		7.3.1 Drehzahlregler	
		7.3.2 Lageregler	80
		7.3.3 Bestimmung der Skalierungsfaktoren	84
		7.3.4 Regelverhalten der Fuzzy-Kaskade	85
	7.4	Bewertung	
	7.5	Ausblick: Selbstorganisierender Fuzzy-Regler	
		7.5.1 Beschreibung des Lernalgorithmus	
		7.5.2 Die Gütebewertung	
		7.5.3 Das inverse Modell	
		7.5.4 Der Regel-Modifizierer	
		7.5.5 Lernverhalten des SOFLC	95
8	PID	-Kaskadenregelung	97
	8.1	Regleroptimierung	97
		8.1.1 Vorgabe des Störverhaltens	
		8.1.2 Wahl des Gütefunktionals	
		8 1 3 Ergehnisse der Reglerontimierung	100

	8.2	Differenzdrehzahlaufschaltung	103
		8.2.1 Bestimmung der Aufschaltungskoeffizienten	
		8.2.1.1 Dämpfungsvorgabe	
		8.2.1.2 Verlust der Beobachtbarkeit an	
		bestimmten Arbeitspunkten	105
		8.2.2 Realisierung der Aufschaltung mittels Fuzzy-Logik	
		8.2.3 Einfluß der Aufschaltung auf das Regelverhalten	111
	8.3	Kalman-Filter zur Geschwindigkeitsschätzung	113
		8.3.1 Beschreibung des Filteralgorithmus	114
		8.3.2 Diskretisierung der kontinuierlichen	
		Systemgleichungen	117
		8.3.3 Kovarianz- und Empfindlichkeitsanalyse	
9	Zusa	mmenfassung	123
10	Anhang		125
	10.1	Streckenparameter der Schachtförderanlage	125
		Koeffizienten der Differenzdrehzahlaufschaltung	
11	Liter	raturverzeichnis	127