CONTENTS

Preface			xv
1.	Introduction		1
	1.1	Introduction	1
	1.2	Type I Error, Type II Error, and Power	3
	1.3	Multiple Statistical Tests and the Probability	
		of Spurious Results	6
	1.4	Statistical Significance Versus Practical Importance	10
	1.5	Outliers	12
	1.6	Missing Data	18
	1.7	Unit or Participant Nonresponse	31
	1.8	Research Examples for Some Analyses	
		Considered in This Text	32
	1.9	The SAS and SPSS Statistical Packages	35
	1.10	SAS and SPSS Syntax	35
	1.11	SAS and SPSS Syntax and Data Sets on the Internet	36
	1.12	Some Issues Unique to Multivariate Analysis	36
	1.13	Data Collection and Integrity	37
	1.14	Internal and External Validity	39
	1.15	Conflict of Interest	40
	1.16	Summary	40
	1.17	Exercises	41
2.	Matrix Algebra		44
	2.1	Introduction	44
	2.2	Addition, Subtraction, and Multiplication of a	
		Matrix by a Scalar	47
	2.3	Obtaining the Matrix of Variances and Covariances	50
	2.4	Determinant of a Matrix	52
	2.5	Inverse of a Matrix	55
	2.6	SPSS Matrix Procedure	58

	2.7	SAS IML Procedure	60
	2.8	Summary	61
	2.9	Exercises	61
3.	Multi	ple Regression for Prediction	65
	3.1	Introduction	65
	3.2	Simple Regression	67
	3.3	Multiple Regression for Two Predictors: Matrix Formulation	69
	3.4	Mathematical Maximization Nature of	
		Least Squares Regression	72
	3.5	Breakdown of Sum of Squares and F Test for	
		Multiple Correlation	73
	3.6	Relationship of Simple Correlations to Multiple Correlation	75
	3.7	Multicollinearity	75
	3.8	Model Selection	77
	3.9	Two Computer Examples	82
	3.10	Checking Assumptions for the Regression Model	93
	3.11	Model Validation	96
	3.12	Importance of the Order of the Predictors	101
	3.13	Other Important Issues	104
	3.14	Outliers and Influential Data Points	107
	3.15	Further Discussion of the Two Computer Examples	116
	3.16	Sample Size Determination for a Reliable Prediction Equation	121
	3.17	Other Types of Regression Analysis	124
	3.18	Multivariate Regression	124
	3.19	Summary	128
	3.20	Exercises	129
4.	Two-	Group Multivariate Analysis of Variance	142
	4.1	Introduction	142
	4.2	Four Statistical Reasons for Preferring a Multivariate Analysis	143
	4.3	The Multivariate Test Statistic as a Generalization of	
		the Univariate t Test	144
	4.4	Numerical Calculations for a Two-Group Problem	146
	4.5	Three Post Hoc Procedures	150
	4.6	SAS and SPSS Control Lines for Sample Problem	150
	17	Multivariate Significance but No Universite Significance	152
	4.7	Multivariate Significance but No Univariate Significance	150
	4.0 1 0	Power Analysis	150
	4.7	Ways of Improving Dower	101
	4.10 111	A Priori Dower Estimation for a Two Crown MANIONA	103
	יד. אור אור	Summon	100
	ч.12 Л 12	Summary	109
	4.15	LAUC1923	170
5.	K-Gr	oup MANOVA: A Priori and Post Hoc Procedures	175
	5.1	Introduction	175

5.2	Multivariate Regression Analysis for a Sample Problem	176
5.3	Traditional Multivariate Analysis of Variance	177
5.4	Multivariate Analysis of Variance for Sample Data	179
5.5	Post Hoc Procedures	184
5.6	The Tukey Procedure	187
5.7	Planned Comparisons	193
5.8	Test Statistics for Planned Comparisons	196
5.9	Multivariate Planned Comparisons on SPSS MANOVA	198
5.10	Correlated Contrasts	204
5.11	Studies Using Multivariate Planned Comparisons	208
5.12	Other Multivariate Test Statistics	210
5.13	How Many Dependent Variables for a MANOVA?	211
5.14	Power Analysis—A Priori Determination of Sample Size	211
5.15	Summary	213
5.16	Exercises	214
Assu	mptions in MANOVA	219
6.1	Introduction	219
6.2	ANOVA and MANOVA Assumptions	220
6.3	Independence Assumption	220
6.4	What Should Be Done With Correlated Observations?	222
6.5	Normality Assumption	224
6.6	Multivariate Normality	225
6.7	Assessing the Normality Assumption	226
6.8	Homogeneity of Variance Assumption	232
6.9	Homogeneity of the Covariance Matrices	233
6.10	Summary	240
6.11	Complete Three-Group MANOVA Example	242
6.12	Example Results Section for One-Way MANOVA	249
6.13	Analysis Summary	250
Appe	endix 6.1 Analyzing Correlated Observations	255
Appe	endix 6.2 Multivariate Test Statistics for Unequal	
F F -	Covariance Matrices	259
6.14	Exercises	262
Facto	orial ANOVA and MANOVA	265
71	Introduction	265
72	Advantages of a Two-Way Design	266
73	Univariate Factorial Analysis	268
74	Factorial Multivariate Analysis of Variance	200
75	Weighting of the Cell Means	2.80
7.6	Analysis Procedures for Two-Way MANOVA	280
7.0 77	Factorial MANOVA With SeniorWISE Data	280
7.8	Example Results Section for Factorial MANOVA With	201
	SeniorWise Data	290
79	Three-Way MANOVA	292
	A more than a marked the	

7.10	Factorial Descriptive Discriminant Analysis	294
7.11	Summary	298
7.12	Exercises	299
Analy	vsis of Covariance	301
8.1	Introduction	301
8.2	Purposes of ANCOVA	302
8.3	Adjustment of Posttest Means and Reduction of Error Variance	303
8.4	Choice of Covariates	307
8.5	Assumptions in Analysis of Covariance	308
8.6	Use of ANCOVA With Intact Groups	311
8.7	Alternative Analyses for Pretest-Posttest Designs	312
8.8	Error Reduction and Adjustment of Posttest Means for	
	Several Covariates	314
8.9	MANCOVA—Several Dependent Variables and	
	Several Covariates	315
8.10	Testing the Assumption of Homogeneous	
	Hyperplanes on SPSS	316
8.11	Effect Size Measures for Group Comparisons in	
	MANCOVA/ANCOVA	317
8.12	Two Computer Examples	318
8.13	Note on Post Hoc Procedures	329
8.14	Note on the Use of MVMM	330
8.15	Example Results Section for MANCOVA	330
8.16	Summary	332
8.17	Analysis Summary	333
8.18	Exercises	335
Explo	pratory Factor Analysis	339
9.1	Introduction	339
9.2	The Principal Components Method	340
9.3	Criteria for Determining How Many Factors to Retain	
	Using Principal Components Extraction	342
9.4	Increasing Interpretability of Factors by Rotation	344
9.5	What Coefficients Should Be Used for Interpretation?	346
9.6	Sample Size and Reliable Factors	347
9.7	Some Simple Factor Analyses Using Principal	
	Components Extraction	347
9.8	The Communality Issue	359
9.9	The Factor Analysis Model	360
9.10	Assumptions for Common Factor Analysis	362
9.11	Determining How Many Factors Are Present With	
. –	Principal Axis Factoring	364
9.12	Exploratory Factor Analysis Example With Principal Axis	201
	Factoring	365
9.13	Factor Scores	373
		-

	9.14	Using SPSS in Factor Analysis	376
	9.15	Using SAS in Factor Analysis	378
	9.16	Exploratory and Confirmatory Factor Analysis	382
	9.17	Example Results Section for EFA of Reactions-to-	
		Tests Scale	383
	9.18	Summary	385
	9.19	Exercises	387
10.	Discri	minant Analysis	391
	10.1	Introduction	391
	10.2	Descriptive Discriminant Analysis	392
	10.3	Dimension Reduction Analysis	393
	10.4	Interpreting the Discriminant Functions	395
	10.5	Minimum Sample Size	396
	10.6	Graphing the Groups in the Discriminant Plane	397
	10.7	Example With SeniorWISE Data	398
	10.8	National Merit Scholar Example	409
	10. 9	Rotation of the Discriminant Functions	415
	10.10	Stepwise Discriminant Analysis	415
	10.11	The Classification Problem	416
	10.12	Linear Versus Quadratic Classification Rule	425
	10.13	Characteristics of a Good Classification Procedure	425
	10.14	Analysis Summary of Descriptive Discriminant Analysis	426
	10.15	Example Results Section for Discriminant Analysis of the	
		National Merit Scholar Example	427
	10.16	Summary	429
	10.17	Exercises	429
11.	Binar	y Logistic Regression	434
	11.1	Introduction	434
	11.2	The Research Example	435
	11.3	Problems With Linear Regression Analysis	436
	11.4	Transformations and the Odds Ratio With a	
		Dichotomous Explanatory Variable	438
	11.5	The Logistic Regression Equation With a Single	
		Dichotomous Explanatory Variable	442
	11.6	The Logistic Regression Equation With a Single	
		Continuous Explanatory Variable	443
	11.7	Logistic Regression as a Generalized Linear Model	444
	11.8	Parameter Estimation	445
	11.9	Significance Test for the Entire Model and Sets of Variables	447
	11.10	McFadden's Pseudo R-Square for Strength of Association	448
	11.11	Significance Tests and Confidence Intervals for	
		Single Variables	450
	11.12	Preliminary Analysis	451
	11.13	Residuals and Influence	451

11.14	Assumptions	453
11.15	Other Data Issues	457
11.16	Classification	458
11.17	Using SAS and SPSS for Multiple Logistic Regression	461
11.18	Using SAS and SPSS to Implement the Box-Tidwell	
	Procedure	463
11.19	Example Results Section for Logistic Regression	
	With Diabetes Prevention Study	465
11.20	Analysis Summary	466
11.21	Exercises	468
Repea	ated-Measures Analysis	471
12.1	Introduction	471
12.2	Single-Group Repeated Measures	475
12.3	The Multivariate Test Statistic for Repeated Measures	477
12.4	Assumptions in Repeated-Measures Analysis	480
12.5	Computer Analysis of the Drug Data	482
12.6	Post Hoc Procedures in Repeated-Measures Analysis	487
12.7	Should We Use the Univariate or Multivariate Approach?	488
12.8	One-Way Repeated Measures—A Trend Analysis	489
12.9	Sample Size for Power = .80 in Single-Sample Case	494
12.10	Multivariate Matched-Pairs Analysis	496
12.11	One-Between and One-Within Design	497
12.12	Post Hoc Procedures for the One-Between and	
	One-Within Design	505
12.13	One-Between and Two-Within Factors	511
12.14	Two-Between and One-Within Factors	515
12.15	Two-Between and Two-Within Factors	517
12.16	Totally Within Designs	518
12.17	Planned Comparisons in Repeated-Measures Designs	520
12.18	Profile Analysis	524
12.19	Doubly Multivariate Repeated-Measures Designs	528
12.20	Summary	529
12.21	Exercises	530
Hiera	rchical Linear Modeling	537
13.1	Introduction	537
13.2	Problems Using Single-Level Analyses of	
	Multilevel Data	539
13.3	Formulation of the Multilevel Model	541
13.4	Two-Level Model—General Formation	541
13.5	Example 1: Examining School Differences in	
	Mathematics	545
13.6	Centering Predictor Variables	563
13.7	Sample Size	568
13.8	Example 2: Evaluating the Efficacy of a Treatment	569
13.9	Summary	576

14.	Multivariate	Multilevel Modeling	578
	14.1 Introd	uction	578
	14.2 Benefi	its of Conducting a Multivariate Multilevel	
	Analy	sis	579
	14.3 Resear	rch Example	580
	14.4 Prepar	ring a Data Set for MVMM Using SAS and SPSS	581
	14.5 Incorp	orating Multiple Outcomes in the Level-1 Model	584
	14.6 Exam	ple 1: Using SAS and SPSS to Conduct Two-Level	
	Multiv	variate Analysis	585
	14.7 Exam	ple 2: Using SAS and SPSS to Conduct	
	Three	-Level Multivariate Analysis	595
	14.8 Summ	lary	614
	14.9 SAS a	nd SPSS Commands Used to Estimate All	
	Mode	ls in the Chapter	615
15.	Canonical C	orrelation	618
	15.1 Introd	uction	618
	15.2 The N	fature of Canonical Correlation	619
	15.3 Signif	icance Tests	620
	15.4 Interp	reting the Canonical Variates	621
	15.5 Comp	uter Example Using SAS CANCORR	623
	15.6 A Stu	dy That Used Canonical Correlation	625
	15.7 Using	SAS for Canonical Correlation on	
	Two S	Sets of Factor Scores	628
	15.8 The R	edundancy Index of Stewart and Love	630
	15.9 Rotati	on of Canonical Variates	631
	15.10 Obtain	ning More Reliable Canonical Variates	632
	15.11 Summ	nary	632
	15.12 Exerc	ises	634
16.	Structural Ec	juation Modeling	639
	16.1 Introd	luction	639
	16.2 Notati	ion, Terminology, and Software	639
	16.3 Causa	l Inference	642
	16.4 Funda	mental Topics in SEM	643
	16.5 Three	Principal SEM Techniques	663
	16.6 Obser	ved Variable Path Analysis	663
	16.7 Obser	ved Variable Path Analysis With the Mueller	
	Study		668
	16.8 Confi	rmatory Factor Analysis	689
	16.9 CFA V	With Reactions-to-Tests Data	691
	16.10 Laten	t Variable Path Analysis	707
	16.11 Laten	t Variable Path Analysis With Exercise Behavior	
	Study		711
	16.12 SEM	Considerations	719
	16.13 Addit	ional Models in SEM	724
	16.14 Final	Thoughts	726

Appendix 16.1 Abbreviated SAS Output for Final Observed	
Variable Path Model	734
Appendix 16.2 Abbreviated SAS Output for the Final	
Latent Variable Path Model for Exercise Behavior	736
Appendix A: Statistical Tables	747
Appendix B: Obtaining Nonorthogonal Contrasts in Repeated Measures Designs	763
Detailed Answers	771
Index	785