Contents

Preface to the Seventh Edition xvii About the Companion Website xix

Part I The Basic Principles of Gene Cloning and DNA Analysis 1

1 Why Gene Cloning and DNA Analysis are Important 3

- 1.1 The early development of genetics 3
- 1.2 The advent of gene cloning and the polymerase chain reaction 4
- 1.3 What is gene cloning? 5
- 1.4 What is PCR? 6
- 1.5 Why gene cloning and PCR are so important 7
 - 1.5.1 Obtaining a pure sample of a gene by cloning 7
 - 1.5.2 PCR can also be used to purify a gene 8
- 1.6 How to find your way through this book 11 Further reading 12

2 Vectors for Gene Cloning: Plasmids and Bacteriophages 13

- 2.1 Plasmids 13
 - 2.1.1 Size and copy number 14
 - 2.1.2 Conjugation and compatibility 16
 - 2.1.3 Plasmid classification 16
 - 2.1.4 Plasmids in organisms other than bacteria 17
- 2.2 Bacteriophages 17
 - 2.2.1 The phage infection cycle 18
 - 2.2.2 Lysogenic phages 19
 Gene organization in the λ DNA molecule 19
 The linear and circular forms of λ DNA 19
 M13 a filamentous phage 22
 - 2.2.3 Viruses as cloning vectors for other organisms 24 Further reading 24

3 Purification of DNA from Living Cells 25

- 3.1 Preparation of total cell DNA 25
 - 3.1.1 Growing and harvesting a bacterial culture 26
 - 3.1.2 Preparation of a cell extract 28
 - 3.1.3 Purification of DNA from a cell extract 29

Removing contaminants by organic extraction and enzyme digestion 29

Using ion-exchange chromatography to purify DNA from a cell extract 30

Using silica to purify DNA from a cell extract 30

- 3.1.4 Concentration of DNA samples 32
- 3.1.5 Measurement of DNA concentration 33
- 3.1.6 Other methods for the preparation of total cell DNA 34
- 3.2 Preparation of plasmid DNA 35
 - 3.2.1 Separation on the basis of size 35
 - 3.2.2 Separation on the basis of conformation 37
 Alkaline denaturation 37
 Ethidium bromide—caesium chloride density gradient centrifugation 38
 - 3.2.3 Plasmid amplification 39
- 3.3 Preparation of bacteriophage DNA 40
 - 3.3.1 Growth of cultures to obtain a high λ titre 41
 - 3.3.2 Preparation of non-lysogenic λ phages 41
 - 3.3.3 Collection of phages from an infected culture 43
 - 3.3.4 Purification of DNA from λ phage particles 43
 - 3.3.5 Purification of M13 DNA causes few problems 43
 - Further reading 45

4 Manipulation of Purified DNA 47

- 4.1 The range of DNA manipulative enzymes 48
 - 4.1.1 Nucleases 48
 - 4.1.2 Ligases 50
 - 4.1.3 Polymerases 51
 - 4.1.4 DNA-modifying enzymes 52
- 4.2 Enzymes for cutting DNA: Restriction endonucleases 53
 - 4.2.1 The discovery and function of restriction endonucleases 54
 - 4.2.2 Type II restriction endonucleases cut DNA at specific nucleotide sequences 55
 - 4.2.3 Blunt ends and sticky ends 55
 - 4.2.4 The frequency of recognition sequences in a DNA molecule 57
 - 4.2.5 Performing a restriction digest in the laboratory 58
 - 4.2.6 Analysing the result of restriction endonuclease cleavage 59
 Separation of molecules by gel electrophoresis 59
 Visualizing DNA molecules in an agarose gel 60
 - 4.2.7 Estimation of the sizes of DNA molecules 61
 - 4.2.8 Mapping the positions of different restriction sites in a DNA molecule 62

4.2.9	Special gel electrophoresis methods for separating larger
	molecules 63

- 4.3 Ligation: Joining DNA molecules together 66
 - 4.3.1 The mode of action of DNA ligase 66
 - 4.3.2 Sticky ends increase the efficiency of ligation 67
 - 4.3.3 Putting sticky ends on to a blunt-ended molecule 67 Linkers 68 Adaptors 68
 - 4.3.4 Blunt end ligation with a DNA topoisomerase 71 Further reading 74

5 Introduction of DNA into Living Cells 75

Homopolymer tailing 70

- 5.1 Transformation: The uptake of DNA by bacterial cells 76
 - 5.1.1 Not all species of bacteria are equally efficient at DNA uptake 77
 - 5.1.2 Preparation of competent E. coli cells 78
 - 5.1.3 Selection for transformed cells 78
- 5.2 Identification of recombinants 79
 - 5.2.1 Recombinant selection with pBR322: Insertional inactivation of an antibiotic resistance gene 80
 - 5.2.2 Insertional inactivation does not always involve antibiotic resistance 81
- 5.3 Introduction of phage DNA into bacterial cells 83
 - 5.3.1 Transfection 83
 - 5.3.2 In vitro packaging of λ cloning vectors 83
 - 5.3.3 Phage infection is visualized as plaques on an agar medium 86
- 5.4 Identification of recombinant phages 86
 - 5.4.1 Insertional inactivation of a *lacZ'* gene carried by the phage vector 87
 - 5.4.2 Insertional inactivation of the λ cl gene 87
 - 5.4.3 Selection using the Spi phenotype 88
 - 5.4.4 Selection on the basis of λ genome size 88
- 5.5 Introduction of DNA into non-bacterial cells 88
 - 5.5.1 Transformation of individual cells 88
 - 5.5.2 Transformation of whole organisms 90
 - Further reading 90

6 Cloning Vectors for Escherichia coli 93

- 6.1 Cloning vectors based on E. coli plasmids 94
 - 6.1.1 The nomenclature of plasmid cloning vectors 94
 - 6.1.2 The useful properties of pBR322 94
 - 6.1.3 The pedigree of pBR322 95
 - 6.1.4 More sophisticated E. coli plasmid cloning vectors 95
 pUC8: A Lac selection plasmid 97
 pGEM3Z: In vitro transcription of cloned DNA 98

	6.2	Clonin	g vectors based on λ bacteriophage 99
		6.2.1	Segments of the λ genome can be deleted without impairing viability 99
		6.2.2	Natural selection was used to isolate modified λ that lack certain restriction sites 100
		6.2.3	Insertion and replacement vectors 102 Insertion vectors 102
		6.2.4	Replacement vectors 102 Cloning experiments with λ insertion or replacement vectors 103
			Long DNA fragments can be cloned using a cosmid 103 λ and other high-capacity vectors enable genomic libraries to be constructed 104
	6.3	6.3.1	ng vectors for the synthesis of single-stranded DNA 106 Vectors based on M13 bacteriophage 107
	6.4	Vecto	Hybrid plasmid–M13 vectors 108 rs for other bacteria 109 er reading 110
7	Clo	ning	Vectors for Eukaryotes 111
	7.1	Vecto	rs for yeast and other fungi 111
		7.1.1	
			A YEp may insert into yeast chromosomal DNA 113 Other types of yeast cloning vector 115
			DNA in yeast 116 The structure and use of a YAC vector 116 Applications for YAC vectors 118
		7.1.6	Vectors for other yeasts and fungi 118
	7.2		ng vectors for higher plants 119
		7.2.1	engineer 119
			Using the Ti plasmid to introduce new genes into a plant cell 120
			Production of transformed plants with the Ti plasmid 122 The Ri plasmid 123
		7.2.2	Limitations of cloning with Agrobacterium plasmids 123 Cloning genes in plants by direct gene transfer 124 Direct gene transfer into the nucleus 125
		7.2.3	1 3
			Caulimovirus vectors 127
	7.3	Clani	Geminivirus vectors 127
	7.3	7.3.1	ng vectors for animals 127 Cloning vectors for insects 128
		7.5.1	P elements as cloning vectors for <i>Drosophila</i> 128
			Cloning vectors based on insect viruses 129

7.3.2	Cloning in mammals 130	
	Viruses as cloning vectors for mammals	130
	Gene cloning without a vector 131	
Furthe	er reading 132	

8 How to Obtain a Clone of a Specific Gene 135

- 8.1 The problem of selection 135
 - 8.1.1 There are two basic strategies for obtaining the clone you want 136
- 8.2 Direct selection 137
 - 8.2.1 Marker rescue extends the scope of direct selection 138
 - 8.2.2 The scope and limitations of marker rescue 139
- 8.3 Identification of a clone from a gene library 140
 - 8.3.1 Gene libraries 140

Not all genes are expressed at the same time 140 mRNA can be cloned as complementary DNA 142

- 8.4 Methods for clone identification 143
 - 8.4.1 Complementary nucleic acid strands hybridize to each other
 - 8.4.2 Colony and plaque hybridization probing 144
 Labelling with a radioactive marker 145
 Non-radioactive labelling 146
 - 8.4.3 Examples of the practical use of hybridization probing 146
 Abundancy probing to analyse a cDNA library 147
 Oligonucleotide probes for genes whose translation products have been characterized 148
 Heterologous probing allows related genes to be identified 150
 Southern hybridization enables a specific restriction fragment containing a gene to be identified 151
 - 8.4.4 Identification methods based on detection of the translation product of the cloned gene $\ 153$

Antibodies are required for immunological detection methods 153

Using a purified antibody to detect protein in recombinant colonies 154

The problem of gene expression 155

Further reading 155

9 The Polymerase Chain Reaction 157

- 9.1 PCR in outline 157
- 9.2 PCR in more detail 159
 - 9.2.1 Designing the oligonucleotide primers for a PCR 159
 - 9.2.2 Working out the correct temperatures to use 162
- 9.3 After the PCR: Studying PCR products 164
 - 9.3.1 Gel electrophoresis of PCR products 164
 - 9.3.2 Cloning PCR products 166
 - 9.3.3 Problems with the error rate of Taq polymerase 167

- 9.4 Real-time PCR enables the amount of starting material to be quantified 169
 - 9.4.1 Carrying out a quantitative PCR experiment 169
 - 9.4.2 Real-time PCR can also quantify RNA 171

Further reading 171

Part II The Applications of Gene Cloning and DNA Analysis in Research 173

10	Sequ	encing	Genes	and	Genomes	175
----	------	--------	-------	-----	---------	-----

- 10.1 Chain-termination DNA sequencing 176
 - 10.1.1 Chain-termination sequencing in outline 176
 - 10.1.2 Not all DNA polymerases can be used for sequencing 178
 - 10.1.3 Chain-termination sequencing with Tag polymerase 179
 - 10.1.4 Limitations of chain-termination sequencing 180
 - 10.2 Next-generation sequencing 182
 - 10.2.1 Preparation of a next-generation sequencing library 182
 DNA fragmentation 183
 Immobilization of the library 184
 Amplification of the library 184
 - 10.2.2 Next-generation sequencing methods 185
 Reversible terminator sequencing 186
 Pyrosequencing 187
 - 10.2.3 Third-generation sequencing 188
 - 10.2.4 Directing next-generation sequencing at specific sets of genes 188
 - 10.3 How to sequence a genome 189
 - Shotgun sequencing of prokaryotic genomes 190
 Shotgun sequencing of the Haemophilus influenzae genome 190
 Shotgun sequencing of other prokaryotic genomes 193
 - 10.3.2 Sequencing of eukaryotic genomes 194
 The hierarchical shotgun approach 194
 Shotgun sequencing of eukaryotic genomes 196
 What do we mean by 'genome sequence'? 198

Further reading 198

11 Studying Gene Expression and Function 201

- 11.1 Studying the RNA transcript of a gene 202
 - 11.1.1 Detecting the presence of a transcript and determining its nucleotide sequence 203
 - 11.1.2 Transcript mapping by hybridization between gene and RNA 204
 - 11.1.3 Transcript analysis by primer extension 205
 - 11.1.4 Transcript analysis by PCR 206

11.2	Studvina	the	regulation	of	gene	expression	207
------	----------	-----	------------	----	------	------------	-----

- 11.2.1 Identifying protein binding sites on a DNA molecule 209
 Gel retardation of DNA-protein complexes 209
 Footprinting with DNase I 210
 Modification interference assays 212
- 11.2.2 Identifying control sequences by deletion analysis 212
 Reporter genes 213
 Carrying out a deletion analysis 215

11.3 Identifying and studying the translation product of a cloned gene 216

- 11.3.1 HRT and HART can identify the translation product of a cloned gene 216
- 11.3.2 Analysis of proteins by in vitro mutagenesis 216
 Different types of in vitro mutagenesis techniques 218
 Using an oligonucleotide to create a point mutation in a cloned gene 220
 Other methods of creating a point mutation in a cloned gene 220

The potential of in vitro mutagenesis 223

Further reading 223

12 Studying Genomes 225

- 12.1 Genome annotation 225
 - 12.1.1 Identifying the genes in a genome sequence 226
 Searching for open reading frames 226
 Simple ORF scans are less effective at locating genes in eukaryotic genomes 227
 Gene location is aided by homology searching 228
 Comparing the sequences of related genomes 229
 Identifying the binding sites for regulatory proteins in a genome sequence 230
 - 12.1.2 Determining the function of an unknown gene 231
 Assigning gene function by experimental analysis requires a reverse approach to genetics 231
 Specific genes can be inactivated by homologous recombination 232

12.2 Studies of the transcriptome and proteome 233

- Studying the transcriptome 234
 Studying transcriptomes by microarray or chip analysis 234
 Studying a transcriptome by SAGE 235
 Sequencing a transcriptome by RNA-seq 236
 Advantages of the different methods for transcriptome analysis 237
- 12.2.2 Studying the proteome 237
 Separating the proteins in a proteome 238
 Identifying the individual proteins after separation 239
- 12.2.3 Studying protein-protein interactions 240 Phage display 241 The yeast two-hybrid system 242

Further reading 243

Part III The Applications of Gene Cloning

an	d DNA	Analysis in Biotechnology 245
12	Productio	on of Protein from Cloned Genes 247
13		
		vectors for the expression of foreign genes in E. coli 249
	13.1.1	The promoter is the critical component of an expression vector 251
		The promoter must be chosen with care 251
		Examples of promoters used in expression vectors 253
	13.1.2	Cassettes and gene fusions 254
		I problems with the production of recombinant protein in
	E. coli	
		Problems resulting from the sequence of the foreign gene 257
		Problems caused by E. coli 258
		tion of recombinant protein by eukaryotic cells 259
		Recombinant protein from yeasts and filamentous fungi 260
		Saccharomyces cerevisiae as the host for recombinant
		protein synthesis 260
		Other yeasts and fungi 261
	13 3 2	Using animal cells for recombinant protein production 262
	.0.0.2	Protein production in mammalian cells 262
		Protein production in insect cells 262
	13.3.3	Pharming: Recombinant protein from live animals and plants
	10.0.0	263
		Pharming in animals 263
		Recombinant proteins from plants 265
		Ethical concerns raised by pharming 265
	Further	reading 266
11	Gono Cla	oning and DNA Analysis in Medicine 269
1 ~		•
		tion of recombinant pharmaceuticals 269
	14.1.1	
		Synthesis and expression of artificial insulin genes 270
	14.1.2	Synthesis of human growth hormones in E. coli 271
		Recombinant factor VIII 274
		Synthesis of other recombinant human proteins 275
	14.1.5	Recombinant vaccines 275
		Producing vaccines as recombinant proteins 276
		Recombinant vaccines in transgenic plants 277
		Live recombinant virus vaccines 279
	14.2 Identifi	cation of genes responsible for human diseases 280
	14.2.1	How to identify a gene for a genetic disease 282
		Locating the approximate position of the gene in the human genome 282
		Linkage analysis of the human BRCA1 gene 283

Identification of candidates for the disease gene 284

	14.3 Gene t	herapy 286
	14.3.1	Gene therapy for inherited diseases 286
		Gene therapy and cancer 288
		The ethical issues raised by gene therapy 288
		reading 290
15	Gene Clo	oning and DNA Analysis in Agriculture 291
	15.1 The ge	ne addition approach to plant genetic engineering 292
	15.1.1	Plants that make their own insecticides 292
		The δ -endotoxins of <i>Bacillus thuringiensis</i> 292
		Cloning a δ-endotoxin gene in maize 293
		Cloning δ -endotoxin genes in chloroplasts 295
		Countering insect resistance to δ -endotoxin crops 296
	15.1.2	• • • • • • • • • • • • • • • • • • •
		'Roundup Ready' crops 298
	45.4.0	A new generation of glyphosate-resistant crops 299
		Other gene addition projects 300
		ubtraction 302
	15.2.1	Antisense RNA and the engineering of fruit ripening in
		tomato 302
		Using antisense RNA to inactivate the polygalacturonase
		gene 302
	15.2.2	Using antisense RNA to inactivate ethylene synthesis 304
	13.2.2	
	15 2 Problem	genetic engineering 304 ns with genetically modified plants 305
	15.3.1	Safety concerns with selectable markers 305
		The terminator technology 306
		The possibility of harmful effects on the environment 307
		reading 308
	, 4, 1, 10, 1	.cading 500
16	Gene Clo	ning and DNA Analysis in Forensic
_		and Archaeology 311
		nalysis in the identification of crime suspects 312
		Genetic fingerprinting by hybridization probing 312
	16.1.2	DNA profiling by PCR of short tandem repeats 312
		g kinship by DNA profiling 315
	16.2.1	Related individuals have similar DNA profiles 315
	16.2.2	
		STR analysis of the Romanov bones 315
		Mitochondrial DNA was used to link the Romanov skeletons
		with living relatives 317
		The missing children 318
	16.3 Sex ide	ntification by DNA analysis 318
	16.3.1	PCRs directed at Y chromosome-specific sequences 318
	16.3.2	PCR of the amelogenin gene 319

16.4 Archaeogenetics: Using DNA to study human prehistory 320

16.4.1 The origins of modern humans 320

DNA analysis has challenged the multiregional hypothesis 321 DNA analysis shows that Neanderthals are not the direct ancestors of modern Europeans 322

The Neanderthal genome sequence suggests there was interbreeding with *H. sapiens* 323

16.4.2 DNA can also be used to study prehistoric human migrations 324

Modern humans may have migrated from Ethiopia to Arabia 324

Colonization of the New World 325

Further reading 328

Glossary 329 Index 345