John MacGregor

Predictive Analysis with SAP*

The Comprehensive Guide

Bonn • Boston

Contents

Introduction		17
Acknowledgment	3	21

PART I Predictive Analysis Overview

1	An li	ntrodu	ction to Predictive Analysis	25
	1.1	Definit	ions of Predictive Analysis	25
	1.2	The Va	alue of Predictive Analysis	28
	1.3	User Pe	ersonas	31
	1.4	Applica	ations of Predictive Analysis	33
	1.5	Classes	s of Applications	37
		1.5.1	Time Series Analysis	37
		1.5.2	Classification Analysis	37
		1.5.3	Cluster Analysis	38
		1.5.4	Association Analysis	38
		1.5.5	Outlier Analysis	38
	1.6	Algorit	thms for Predictive Analysis	39
	1.7	The Pro	edictive Analysis Process	41
	1.8	Hot To	opics and Trends	44
	1.9	Challer	nges and Criteria for Success	45
	1.10	Summa	_ ary	47

2 An Overview of the Predictive Analysis Products in SAP 49

2.1	The Predictive Analysis Library in SAP HANA	
	2.1.1 PAL Workflow and Business Example	55
2.2	The R Integration for SAP HANA	59
	2.2.1 R Integration Worked Business Example	60
2.3	SAP Predictive Analysis	63
2.4	SAP Business Solutions with Predictive Analysis	73
2.5	Summary	77

PART II Predictive Analysis Applied

3	Initi	al Data Exploration	81	
	31	Data Types	83	
	3.2	Data Visualization for Data Exploration	86	
	3.3	Sampling	92	
	3.4	Scaling	97	
	3.5	Binning	101	
	3.6	Outliers	104	
	3.7	Summary	105	

4 Which Algorithm When? 107

4.1	The Main Factors When Selecting an Algorithm	107
4.2	Classes of Applications and Algorithms	109
4.3	Matrix of Application Tasks, Variable Types and Output	113
4.4	Which Algorithm Is the Best?	115
4.5	A Set of Rules for Which Algorithm When	116
4.6	Summary	118

5 When Mining, Beware of Mines 119

5.1	Data M	ining Heaven and Hell	119
5.2	Five Myths		
	5.2.1	Myth No.1. Predictive Analysis is all about Algorithms	121
	5.2.2	Myth No. 2. Predictive Analysis is all about Accuracy	122
	5.2.3	Myth No. 3. Predictive Analysis Requires a	
		Data Warehouse	122
	5.2.4	Myth No. 4. Predictive Analysis is all about	
		Vast Quantities of Data	123
	5.2.5	Myth No. 5. Predictive Analysis is done by	
		Predictive Experts	123
5.3	Five Pitfalls		124
	5.3.1	Pitfall No. 1: Throwing in Data without Thinking	125
	5.3.2	Pitfall No. 2: Lack of Business Knowledge	125
	5.3.3	Pitfall No. 3: Lack of Data Knowledge	125
	5.3.4	Pitfall No. 4: Erroneous Assumptions	126

	5.3.5	Pitfall No. 5: Disorganized Project	126
5.4	Furthei	Challenges and Resolution	126
	5.4.1	Cause and Effect	127
	5.4.2	Lies, Damned Lies, and Statistics	128
	5.4.3	Model Overfitting	132
	5.4.4	Correlation between the Independent Variables	135
5.5	Key Fa	ctors for Success	137
5.6	Summa	ıry	138

6 Applications in SAP1396.1 SAP Smart Meter Analytics139

	6.1.1	Application Description	140
	6.1.2	Current and Planned Use of Predictive Analysis	141
	6.1.3	Benefits	142
6.2	SAP Cu	istomer Engagement Intelligence	142
	6.2.1	Application Description	143
	6.2.2	Current and Planned Use of Predictive Analysis	146
	6.2.3	Benefits	149
6.3	SAP En	terprise Inventory & Service-Level Optimization	149
	6.3.1	Application Description	150
	6.3.2	Current and Planned Use of Predictive Analysis	156
	6.3.3	Benefits	157
6.4	SAP Pr	ecision Gaming	158
	6.4.1	Application Description	158
	6.4.2	Current and Planned Use of Predictive Analysis	160
	6.4.3	Benefits	160
6.5	SAP Af	finity Insight	161
	6.5.1	Application Description	161
	6.5.2	Current and Planned Use of Predictive Analysis	164
	6.5.3	Benefits	165
6.6	SAP De	emand Signal Management	166
	6.6.1	Application Description	166
	6.6.2	Current and Planned Use of Predictive Analysis	167
	6.6.3	Benefits	171
6.7	SAP O	n-Shelf Availability	172
	6.7.1	Application Description	172
	6.7.2	Current and Planned Use of Predictive Analysis	175
	6.7.3	Benefits	176

Contents

6.8	SAP Pro	oduct Recommendation Intelligence	177
	6.8.1	Application Description	177
	6.8.2	Current and Planned Use of Predictive Analysis	180
	6.8.3	Benefits	182
6.9	SAP Cre	edit Insight	182
	6.9.1	Application Description	182
	6.9.2	Current and Planned Use of Predictive Analysis	183
	6.9.3	Benefits	184
6.10	SAP Co	nvergent Pricing Simulation	184
	6.10.1	Application Description	184
	6.10.2	Current and Planned Use of Predictive Analysis	187
	6.10.3	Benefits	187
6.11	Summa	ry	187

7 SAP Predictive Analysis 189

7.1	Getting	started in PA	189
7.2	Accessing and Viewing the Data Source		
7.3	Prepari	ng Data for Analysis	199
7.4	Applyir	ng Algorithms to Analyze the Data	202
	7.4.1	In-Database Analysis using an SAP HANA Table	
		and the PAL	203
	7.4.2	In-Process Analysis using a CSV File and	
		R Integration in PA	205
7.5	Runnin	g the Model and Viewing the Results	209
7.6	Deploy	ing the Model in a Business Application	213
	7.6.1	Exporting the Model as PMML	216
	7.6.2	Sharing the Analysis in the Share View in PA	217
	7.6.3	Exporting and Importing Analyses between PA Users	218
	7.6.4	Exporting an SAP HANA PAL Model from PA	
		as a Stored Procedure	218
7.7	Summa	ary	219

PART III Predictive Analysis Categories

8	Outlier Analysis		
	8.1 8.2	Introduction to Outlier Analysis	223 225

.

8.3	The Inter-Quartile Range Test		227
	8.3.1	The Inter-Quartile Range Test in the PAL	227
	8.3.2	An Example of the IQR Test in the PAL	228
	8.3.3	An Example of the Inter-Quartile Range Test in PA	231
8.4	The Va	riance Test	232
	8.4.1	An Example of the Variance Test in the PAL	233
8.5	K Near	est Neighbor Outlier	235
8.6	Anoma	ly Detection using Cluster Analysis	238
	8.6.1	An Example of the Anomaly Detection Algorithm	
		in the PAL	239
	8.6.2	An Example of Anomaly Detection in PA	241
8.7	The Bu	siness Case for Outlier Analysis	243
8.8	Strengt	ths and Weaknesses of Outlier Analysis	244
8.9	Summa	ary	245

9	Ass	ociatio	n Analysis	247
	9.1	Applic	ations of Association Analysis	248
	9.2	Aprior	i Association Analysis	250
	9.3	Aprior	i Association Analysis in the PAL	255
	9.4	An Exa	Imple of Apriori Association Analysis in the PAL	257
	9.5	An Exa	Imple of Apriori in SAP Predictive Analysis	260
	9.6	Aprior	i Lite Association Analysis	262
		9.6.1	Example 1: Use All the Data to Calculate the	
			Single Items Pre-Rule and Post-Rule	264
		9.6.2	Example 2: 70% Sample Single Items	
			Pre-Rule and Post-Rule	264
		9.6.3	Example 3: Using All the Available Data to Sample and	
			Calculate Single Items	265
	9.7	Streng	ths and Weaknesses of Association Analysis	266
	9.8	Busine	ss Case for Association Analysis	266
	9.9	Summ	ary	267

10	Clus	ter Analysis	269
	10.1 10.2	Introduction to Cluster Analysis Applications of Cluster Analysis	269 270
	10.3	ABC Analysis	271

	10.3.1	ABC Analysis in the PAL	273
	10.3.2	An Example of ABC Analysis in the PAL	274
10.4	K-Means	Cluster Analysis	275
	10.4.1	A Visualization of K-Means	275
	10.4.2	A Simple Example of K-Means in Excel	276
	10.4.3	K-Means in the PAL	278
	10.4.4	An Example of K-Means in the PAL	281
	10.4.5	Choosing the Value of K	288
10.5	Silhouett	e	290
10.6	An Exam	ple of the Silhouette in the PAL	291
10.7	An Exam	ple of Validate K-Means in the PAL	292
10.8	Choosing	the Initial Cluster Centers	294
10.9	Categorio	cal Data and Numeric Cluster Analysis	296
10.10	Self-Orga	anizing Maps	298
	10.10.1	Self-Organizing Maps in the PAL	302
	10.10.2	An Example of Self-Organizing Maps in the PAL	303
10.11	The Busi	ness Case for Cluster Analysis	309
10.12	Strengthe	s and Weaknesses of Cluster Analysis	310
10.13	Summary	/	311

11.1	Introduction to Classification Analysis	313
11.2	Applications of Classification Analysis	314
11.3	An Introduction to Regression Analysis	315
11.4	An Introduction to Decision Trees	317
11.5	An Introduction to Nearest Neighbors	321
11.6	Summary	324

PART IV Classification Analysis

12 Clas	sification	Analysis—Regression	327
12.1	Bi-Varia	te Linear Regression	327
	12.1.1	Bi-Variate Linear Regression in the PAL	332
	12.1.2	An Example of Bi-Variate Linear Regression in	
		the PAL	334
	12.1.3	Predicting or Scoring the Model in the PAL	336
	12.1.4	Bi-Variate Linear Regression in PA	339

.

	12.1.5	Predicting or Scoring the Model in the PA	342
	12.1.6	PMML and Exporting the Model	343
12.2	Bi-Varia	ate Geometric, Exponential, and Logarithmic Regression	345
	12.2.1	Bi-Variate Geometric Regression in the PAL	345
	12.2.2	An Example of Bi-Variate Geometric Regression	
		in the PAL	346
	12.2.3	Using the Bi-Variate Geometric Regression Model	
		to Predict	349
	12.2.4	Bi-Variate Exponential Regression in PA using R	350
	12.2.5	Bi-Variate Logarithmic Regression using the	
		PA Native Algorithm	354
12.3	Multip	le Linear Regression	357
	12.3.1	An Example of Multiple Linear Regression in the PAL	357
	12.3.2	An Example of Multiple Linear Regression in	
		PA using the PAL	361
	12.3.3	Predicting or Scoring the Model in the PAL	361
12.4	Multip	le Exponential Regression	363
	12.4.1	An Example of Multiple Exponential Regression	
		in the PAL	363
	12.4.2	An Example of Multiple Exponential Regression	
		in PA using the PAL	366
	12.4.3	Predicting or Scoring the Model in the PAL	366
12.5	Polyno	mial Regression	368
	12.5.1	An Example of Polynomial Regression in the PAL	368
12.6	Logistic	Regression	373
	12.6.1	Logistic Regression in the PAL	373
	12.6.2	An Example of Logistic Regression in the PAL	375
12.7	The Bu	siness Case for Regression Analysis	384
12.8	Strengt	hs and Weaknesses of Regression Analysis	384
12.9	Summa	Iry	385

-

13.1	Introdu	ction to the Decision Trees Algorithm	387
13.2	CHAID	Analysis	390
	13.2.1	Worked Example of CHAID Analysis	390
	13.2.2	CHAID Analysis in the PAL	396
	13.2.3	CHAID Analysis in PA	399

	13.2.4 Binning of Numeric Variables	402
	13.2.5 Predicting using CHAID Analysis in the PAL	403
13.3	The C4.5 Algorithm	406
	13.3.1 C4.5 in the PAL	410
	13.3.2 C4.5 in PA	412
13.4	CNR Tree—Classification and Regression Trees	415
13.5	Decision Trees and Business Rules	424
13.6	Strengths and Weaknesses of Decision Trees	426
13.7	Summary	426

14 Classification Analysis—K Nearest Neighbor 427

14.1	Introduction	427
14.2	Worked Example	428
	14.2.1 K Nearest Neighbor Analysis in the PAL	430
	14.2.2 KNN Analysis in PA using the PAL KNN Algorithm	432
	14.2.3 Categorical Target or Class Variable	436
14.3	Strengths and Weaknesses of the KNN Algorithm	437
14.4	Summary	438

PART V Advanced Predictive Analysis

15	Time	Series Analysis	441
	15.1	Introduction to Time Series Analysis	441
	15.2	Time Series Patterns	443
	15.3	Naïve Methods	445
	15.4	Single Exponential Smoothing	446
		15.4.1 Worked Example	447
		15.4.2 Single Exponential Smoothing in the PAL	448
		15.4.3 Single Exponential Smoothing in PA using the PAL	451
	15.5	Double Exponential Smoothing	453
		15.5.1 Worked Example	454
		15.5.2 Double Exponential Smoothing in the PAL	455
		15.5.3 Double Exponential Smoothing in PA using the PAL	457
	15.6	Triple Exponential Smoothing	460
		15.6.1 Worked Example	461
		•	

,

	15.6.2 Triple Exponential Smoothing in the PAL	462
	15.6.3 Triple Exponential Smoothing in PA using the PAL	464
15.7	Bi-Variate Linear Regression	467
15.8	The Business Case for Time Series Analysis	470
15.9	Strengths and Weaknesses of Time Series Analysis	470
15.10	Summary	471

16 Text Analysis and Text Mining 473

16.1	Introduction	473
16.2	Applications	474
16.3	Full Text Search	475
16.4	Fuzzy Search	481
16.5	Text Mining and Text Analysis	484
	16.5.1 Examples	487
16.6	The Business Case for Text Analysis and Text Mining	496
16.7	Summary	496

17 Customer Applications 497

17.1	eBay
17.2	MKI Japan
17.3	CISCO
17.4	CIR Foods
17.5	Home Shopping Europe 24
17.6	Bigpoint
17.7	Other Customer Use Cases
	17.7.1 Retail
	17.7.2 Manufacturing
	17.7.3 Transport and Logistics
	17.7.4 Banking
	17.7.5 Public Sector
	17.7.6 High Tech
	17.7.7 Oil and Gas
	17.7.8 Utilities
17.8	Summary

•

Contents

Ap	opendices	515
Δ	References and Resources	515
Λ	A 1 References	515
	A.2 Additional Resources	516
В	The Author	519
Ine	Index	

•