Table of Contents

-

Prefacexi			
Cha	pter 1 Asymptotic Series and Expansions	1	
1.1	Introduction	1	
1.2	Taylor Series Expansions	2	
1.3	Gauge Functions	2	
1.4	Asymptotic Series and Expansions	4	
1.5	Asymptotic Solutions of Differential Equations	10	
1.6	Exercises	11	
Cha	pter 2 Regular Perturbation Methods	13	
2.1	Introduction	13	
2.2	Algebraic Equations	14	
2.3	Ordinary Differential Equations	22	
2.4	Partial Differential Equations	29	
2.5	Applications to Fluid Dynamics: Decay of a Line Vortex	31	
2.6	Exercises	33	
2.7	Appendix. Review of Partial Differential Equations	35	
	A1. Transformation to Canonical Forms	35	

Chap	ter 3 The Method of Strained Coordinates/Parameters	41	
3.1	Introduction	41	
3.2	Poincaré-Lindstedt-Lighthill Method of Perturbed Eigenvalues4		
3.3	Eigenfunction Expansion Method52		
3.4	Lighthill's Method of Shifting Singularities		
3.5	Pritulo's Method of Renormalization		
3.6	Wave Propagation in an Inhomogeneous Medium		
3.7	Applications to Solid Mechanics: Nonlinear Buckling of Elastic Columns		
3.8	Applications to Fluid Dynamics	71	
	3.8.1 Nonlinear Hyperbolic Waves in a Gas	71	
	3.8.2 Rayleigh-Taylor Instability of Superposed Fluids	75	
3.9	Applications to Plasma Physics	82	
	3.9.1 Nonlinear Waves in an Electron-Plasma	82	
	3.9.2 Rayleigh-Taylor Instability of a Plasma in a Magnetic Field	84	
3.10	Limitations of the Method of Strained Parameters	91	
3.11	Exercises	93	
3.12	Appendix 1. Fredholm's Alternative Theorem	95	
3.13	Appendix 2. Floquet Theory	97	
3.14	Appendix 3. Bifurcation Theory	107	
Chap	oter 4 Method of Averaging	113	
4.1	Introduction	113	
4.2	Krylov-Bogoliubov Method of Averaging	114	
4.3	Krylov-Bogoliubov-Mitropolski Generalized Method of Averaging	118	
4.4	Whitham's Averaged Lagrangian Method	122	
4.5	Hamiltonian Perturbation Method	125	
	4.5.1 Systems with Constant Parameters	125	
	4.5.2 Systems with Slowly-Varying Parameters	130	
4.6	Applications to Fluid Dynamics: Nonlinear Evolution of		

.

	Modulated Gravity W	ave Packet on the Surface of a Fluid	135
4.7	Exercises		139
4.8	Appendix 1. Review of	of Calculus of Variations	141
	A1.1 F	unctionals with Second-Order Derivatives	141
	A1.2 F	unctionals with Higher-Order Derivatives	144
	A1.3 F	unctionals with Several Independent Variables	145
4.9	Appendix 2. Hamilton	-Jacobi Theory	148
	A2.1 H	amilton's Equations	148
	A2.2 C	anonical Transformations	150
	A2.3 H	amilton-Jacobi Equation	152
	A2.4 A	ction-Angle Variables	153
Chap	pter 5 The Method of N	Matched Asymptotic Expansions	.155
5.1	Introduction		.155
5.2	Physical Motivation		.155
5.3	The Inner and Outer E	xpansions	.158
5.4	Hyperbolic Equations.		.166
5.5	Elliptic Equations		.176
5.6	Parabolic Equations		.179
5.7	Interior Layers		.181
5.8	Latta's Method of Composite Expansions		
5.9	Turning Point Problem	IS	. 190
	5.9.1 JWKB Approxi	mation	.190
	5.9.2 Solution Near th	e Turning Point	.194
	5.9.3 Langer's Metho	d	.197
5.10	Applications to Fluid I	Dynamics: Boundary-Layer Flow Past	
	a Flat Plate		. 199
	5.10.1 The Outer Expa	nsion	199
	5.10.2 The Inner Expan	nsion	.201
	5.10.3 Flow Due to Dis	placement Thickness	206

Con	tents
-----	-------

5.11	Exerc	rises	207
5.12	Appendix 1. Initial-Value Problem for Partial Differential Equations 20		s209
5.13	.13 Appendix 2. Review of Nonlinear Hyperbolic Equations		
Chap	ter 6	Method of Multiple Scales	219
6.1	Introd	luction	219
6.2	Diffe	rential Equations with Constant Coefficients	219
6.3	Struble's Method24		
6.4	Differential Equations with Slowly Varying Coefficients		
6.5	Generalized Multiple-Scale Method		
6.6	Appli	Applications to Solid Mechanics: Dynamic Buckling of a	
	Thin	Elastic Plate	265
6.7	Appli	ications to Fluid Dynamics	273
	6.7.1	The Problem of Aerodynamically Generated Sound	273
1.5.8	6.7.2	Mathematical Formalization of Lighthill's	
,		Theory of Aerodynamically Generated Sound	276
	6.7.3	Nonlinear Shallow Water Waves	281
		6.7.3(a) Governing Equations	282
		6.7.3(b) Korteweg-deVries Equation	284
		6.7.3(c) Solitary Waves	286
		6.7.3(d) Stokes Waves	288
		6.7.3(e) Perturbed Solitary Wave Propagation	290
		6.7.3(f) Wave Modulation and Nonlinear Schrödinger	
		Equation	295
		6.7.3(g) Long-Time Evolution of the Modulation	299
		6.7.3(h) Second-Harmonic Resonance	303
6.8	Appli	cations to Plasma Physics	307
	6.8.1	Nonlinear Longitudinal Waves in a Hot Electron-Plasma	307
	6.8.2	Ion-Acoustic Solitary Waves in an Inhomogeneous Plasma	310
6.9	Exerc	ises	316

Contents

Chap	ter 7	Miscellaneous Perturbation Methods	319
7.1	A Qu	antum-Field-Theoretic Perturbative Procedure	319
	7.1.1	Blasius Equation	320
7.2	A Per	turbation Method for Linear Stochastic Differential Equations	322
	7.2.1	Application to Wave Propagation in a Random Medium	325
	7.2.2	Renormalization Procedure	327
		7.2.2(a) Exact Solution	327
		7.2.2(b) Perturbative Solution	328
		7.2.2(c) Renormalized Solution	329
7.3	Exerc	ises	333

References	335
Answers to Selected Problems	343
Index	347
Permissions	353

.