The Dynamical Yang-Baxter Equation, Representation Theory, and Quantum Integrable Systems Pavel Etingof and Frédéric Latour ## CONTENTS | 1 | Introduction | | | | | |----------|--|------------------------|---|-------------|--| | | 1.1 | The q | quantum dynamical Yang-Baxter equation | 1 | | | | | 1.1.1 | The equation | 1 | | | | | 1.1.2 | Examples of solutions of QDYBE | 1 | | | | | 1.1.3 | The QDYBE with spectral parameter | | | | | | 1.1.4 | Tensor category of representations | 2
2
3 | | | | | 1.1.5 | Gauge transformations and classification | 3 | | | | | 1.1.6 | Dynamical quantum groups | 3 | | | | | 1.1.7 | The classical dynamical Yang-Baxter equation | 4 | | | | | 1.1.8 | Examples of solutions of CDYBE | 5 | | | | | 1.1.9 | Classification of solutions for CDYBE | 5 | | | | 1.2 | The f | usion and exchange construction | 6 | | | | | 1.2.1 | Intertwining operators | 6 | | | | | 1.2.2 | The fusion and exchange operators | 7 | | | | | 1.2.3 | Fusion and exchange for quantum groups | 7 | | | | | 1.2.4 | The ABRR equation | 8 | | | | | | The universal fusion operator | 8 | | | | | 1.2.6 | The dynamical twist equation | 9 | | | | 1.3 | | | 9 | | | | | 1.3.1 | Trace functions | 9 | | | | | 1.3.2 | Commuting difference operators | 10 | | | | | | Difference equations for the trace functions | 10 | | | | | | Macdonald functions | 10 | | | | | 1.3.5 | Dynamical Weyl groups | 12 | | | 2 | Boo | karou | nd metarial | 15 | | | 4 | 2.1 | _ | nd material
about \$1 ₂ | 15 | | | | $\frac{2.1}{2.2}$ | | ~ | | | | | $\frac{2.2}{2.3}$ | | simple finite-dimensional Lie algebras and roots | 16 | | | | | | product on a simple Lie algebra | 17 | | | | 2.4 | | alley generators | 18 | | | | 2.5 | _ | esentations of finite-dimensional semisimple Lie algebras | 19 | | | | 2.6 | Irredu | icible highest weight modules; Shapovalov form | 21 | | | 3 | Intertwiners, fusion and exchange operators for Lie algebras | | | | | | | 3.1 | Intertwining operators | | | | | | 3.2 | The fusion operator | | | | | | 3.3 | | lynamical twist equation | 28 | | | | 3.4 | | xchange operator | 29 | | | | 3.5 | | ABRR equation | 34 | | | | 3.6 | The universal fusion and exchange operators | 38 | | | |---|---|---|--|--|--| | 4 | 4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13 | Hopf algebras Representations of Hopf algebras The quantum group $\mathfrak{U}_{\mathfrak{q}}(\mathfrak{sl}_2)$ The quantum group $\mathfrak{U}_{\mathfrak{q}}(\mathfrak{g})$ PBW for $\mathfrak{U}_{\mathfrak{q}}(\mathfrak{g})$ The Hopf algebra structure on $\mathfrak{U}_{\mathfrak{q}}(\mathfrak{g})$ Representation theory of $\mathfrak{U}_{\mathfrak{q}}(\mathfrak{g})$ Formal version of quantum groups Quasi-triangular Hopf algebras Quasi-triangular Hopf algebras and representation theory Quasi-triangularity and $\mathfrak{U}_{\mathfrak{q}}(\mathfrak{g})$ Twisting Quasi-classical limit for the QYBE Quasi-classical limit for the QDYBE | 40
40
41
42
44
44
46
47
48
50
57
57 | | | | 5 | Inte
5.1
5.2
5.3
5.4 | rtwiners, fusion and exchange operators for $\mathfrak{U}_q(\mathfrak{g})$
Fusion operator for $\mathfrak{U}_q(\mathfrak{g})$
Exchange operator for $\mathfrak{U}_q(\mathfrak{g})$
The ABRR equation for $\mathfrak{U}_q(\mathfrak{g})$
Quasi-classical limit for ABRR equation for $\mathfrak{U}_q(\mathfrak{g})$ | 61
63
64
65 | | | | 6 | Dyn
6.1
6.2
6.3 | amical R-matrices and integrable systems Classical mechanics vs. quantum mechanics Transfer matrix construction Dynamical transfer matrix construction | 76
70
71
72 | | | | 7 | | Generalized Macdonald-Ruijsenaars operators
Construction of $F_V(\lambda, \mu)$
Quantum spin Calogero Moser Hamiltonian
$F_V(\lambda, \mu)$ for \mathfrak{sl}_2
Center of $\mathfrak{U}_{\mathfrak{q}}(\mathfrak{g})$ and quantum traces
The functions Z_V and X_V
The function G
Macdonald-Ruijsenaars equations
Dual Macdonald-Ruijsenaars equations
The symmetry identity | 78
78
80
80
85
88
92
97
107
107 | | | | 8 | Trac
8.1
8.2 | P = V == V | | | | | 9 | Dyn
9.1 | amical Weyl group
Dynamical Weyl group (for $\mathfrak{g}=\mathfrak{sl}_2$) | 118
127
127 | | | | 9.2 | Dynamical Weyl group (for any finite-dim. simple \mathfrak{g}) | 131 | | | |------------|---|-----|--|--| | References | | | | | | Index | | | | | CONTENTS ix