Contents

Preface	xiii
---------	------

Part 1

I Hilbert Spaces

1	Linear Spaces	1
2	Hermitian Forms	3
3	Hilbert Spaces	6
4	Projections	9
5	Continuous Linear Functionals	12
6	Orthonormal Sets	13
7	Isometric Hilbert Spaces	15
II Bo	ounded Linear Operators on a Hilbert Space	
1	Bounded Linear Operators	17
2	The Adjoint Operator	19
3	Projections	21
4	Some Spectral Theorems	23
5	Operator Convergence	28
6	The Spectral Resolution of a Bounded	
	Self-Adjoint Operator	33
7	The Spectral Resolution of Bounded Normal	
	and Unitary Operators	37
	7.1 Normal Operators	37
	7.1 Unitary Operators	39
III U	nbounded Linear Operators on a Hilbert Space	
1	Unbounded Linear Operators	41
2	The Graph of an Operator	42
3	Symmetric and Self-Adjoint Operators	44
4	The Spectral Resolution of an Unbounded	
	Self-Adjoint Operator	46

Part 2

IV Regular Linear Hamiltonian Systems

1	The Representation of Scalar Problems	51
2	Dirac Systems	54
3	S-Hermitian Systems	56
4	Regular Linear Hamiltonian Systems	57
5	The Spectral Resolution of a Regular Linear	
	Hamiltonian Operator	64
6	Examples	70
V Atl	kinson's Theory for Singular Hamiltonian Systems Even Dimension	
1	Singular Hamiltonian Systems	74
$\hat{2}$	Existence of Solutions in $L^2_{\mathcal{A}}(a,b)$	75
3	Boundary Conditions	79
4	A Preliminary Greens Formula	81
VI T	he Niessen Approach to Singular Hamiltonian Systems	
1	Boundary Values of Hermitian Forms	88
2	The Eigenvalues of $\mathcal{A}(x)$	91
3	Generalization of the Second Weyl Theorem	92
4	Singular Boundary Value Problems	94
5	The Green's Function	95
6	Self-Adjointness	97
7	Modification of the Boundary Conditions	100
8	Other Boundary Conditions	102
9	The Limit Point Case	102
10	The Limit <i>m</i> Case	103
11	The Limit Circle Case	104
12	Comments Concerning the Spectral Resolution	106
VIII	Hinton and Shaw's Extension of Weyl's $M(\lambda)$ Theory to Systems	
1	Notations and Definitions	107
2	The $M(\lambda)$ Matrix	109
3	M Circles	111
4	Square Integrable Solutions	115
5	Singular Boundary Conditions	117
6	The Differential Operator L	118
7	Extension of the Boundary Conditions	122
8	The Extended Green's Formula with One Singular Point	125

9	Self-Adjoint Boundary Value Problems with Mixed Boundary Conditions	191
10	Frampler	131
10	Examples	152
VIII	Hinton and Shaw's Extension with Two Singular Points	
1	$M(\lambda)$ Functions, Limit Circles, L^2 Solutions	138
2	The Differential Operator	141
3	The Resolvent, The Green's Function	142
4	Parameter Independence of the Domain	144
5	The Extended Green's Formula with Two Singular Points	145
6	Examples	148
	6.1 The Jacobi Boundary Value Problem	149
	6.2 The Legendre Boundary Value Problem	150
	6.3 The Tchebycheff Problem of the First Kind	150
	6.4 The Tchebycheff Problem of the Second Kind	151
	6.5 The Generalized Laguerre Boundary Value Problem	152
	6.6 The Ordinary Laguerre Boundary Value Problem	152
	6.7 The Hermite Boundary Value Problem	152
	6.8 Bessel Functions	153
	6.9 The Legendre Squared Problem	154
	6.10 The Laguerre-Type Problem	155
іх т	he $M(\lambda)$ Surface	
1	The Connection Between the Hinton-Shaw and	
	Niessen Approaches	159
2	A Direct Approach to the $M(\lambda)$ Surface	162
3	Examples	164
X Th	e Spectral Resolution for Linear Hamiltonian Systems	
WI		
1	The Specific Problem	167
2	The Spectral Expansion	168
3	The Converse Problem	176
4	The Kelation Between $M(\lambda)$ and $P(\lambda)$	181
5	The Spectral Resolution	182
6	An Example	184
7	Subspace Expansions	185
8	Remarks	187

XI Tł wit	ne Spectral Resolution for Linear Hamiltonian Systems Th Two Singular Points	
1	The Specific Problem	189
2	The Spectral Expansion	190
-3	The Converse Problem	199
4	The Belation Between M_a , M_b , and $P(\lambda)$	203
5	The Spectral Resolution	205
XII I	Distributions	
1	Test Functions with Compact Support, D ; Distributions Without Constraint, D'	207
2	Limits of Distributions	211
3	Test Functions of Rapid Decay, S ; Distributions of Slow Growth, S'	212
4	Test Functions of Slow Growth, P ; Distributions of Rapid Decay, P'	213
5	Test Functions Without Constants, E ; Distributions of Compact Support, E'	214
6	Distributional Differential Equations	215

Part 3

XIII Orthogonal Polynomials

1	Basic Properties of Orthogonal Polynomials	223
2	Orthogonal Polynomials, Differential Equations,	
	Symmetry Factors and Moments	226
XIV Orthogonal Polynomials Satisfying Second Order Differential Equations		
1	The General Theory	237

•	The concrust factory	201
2	The Jacobi Polynomials	239
3	The Legendre Polynomials	243
4	The Generalized Laguerre Polynomials	245
5	The Hermite Polynomials	249
6	The Generalized Hermite Polynomials	252
	6.1 The Generalized Hermite Polynomials of Even Degree	253
	6.2 The Generalized Hermite Polynomials of Odd Degree	255
7	The Bessel Polynomials	257

XV Orthogonal Polynomials Satisfying Fourth Order Differential Equations

1	The General Theory	261
2	The Jacobi Polynomials	262
3	The Generalized Laguerre Polynomials	264
4	The Hermite Polynomials	265
5	The Legendre-Type Polynomials	265
6	The Laguerre-Type Polynomials	270
7	The Jacobi-Type Polynomials	274
XVI Di	Orthogonal Polynomials Satisfying Sixth Order fferential Equations	
1	The H.L. Krall Polynomials	281
2	The Littlejohn Polynomials	287
3	The Second Littlejohn Polynomials	289
4	Koekoek's Generalized Jacobi Type Polynomials	290
XVII Di	Orthogonal Polynomials Satisfying Higher Order fferential Equations	
1	The Generalized Jacobi-Type Polynomials	291
2	The Generalized Laguerre-Type Polynomials $\{L_n^{\alpha M}(x)\}_{n=0}^{\infty}$	295
3	The Generalized Laguerre-Type Polynomials $\{L_n^{2(1/R)}(x)\}_{n=0}^{\infty}$	296
XVII	II Differential Operators in Sobolev Spaces	
1	Regular Second Order Sobolev Boundary Value Problems	302
2	Regular Sobolev Boundary Value Problems	
_	for Linear Hamiltonian Systems	307
3	Singular Second Order Sobolev Boundary Value Problems	312
XIX	Examples of Sobolev Differential Operators	
1	Regular Second Order Operators	327
2	Regular Hamiltonian Systems	328
3	Singular Second Order Sobolev Boundary Value Problems	330
	3.1 The Laplacian Operators	330
	3.2 The Bessel Operators	331
	3.3 The Jacobi Operator	333
	3.4 The Generalized Laguerre Operator	334
	3.5 The Hermite Operator	336
	3.6 The Generalized Even Hermite Operator	336
	3.7 The Generalized Odd Hermite Operator	336

XX T Pol	he Legendre-Type Polynomials and the Laguerre-Type lynomials in a Sobolev Space	
1	The Legendre-Type Polynomials	339
2	The Laguerre-Type Polynomials	340
3	Remarks	341
Closir	ng Remarks	343
Index		345