Table of Contents

Chapter XIV. Evolution Problems: Cauchy Problems in R"

Intr	oduction	1
§1.	The Ordinary Cauchy Problems in Finite Dimensional Spaces	3
	1. Linear Systems with Constant Coefficients	4
	2. Linear Systems with Non Constant Coefficients	6
§2.	Diffusion Equations.	8
	1. Setting of Problem	9
	2. The Method of the Fourier Transform	0
	3. The Elementary Solution of the Heat Equation	5
	4. Mathematical Properties of the Elementary Solution and the	6
		2
§3.	Wave Equations	l
	1. Model Problem: The Wave Equation in \mathbb{R}^n 2	1
	2. The Euler-Poisson-Darboux Equation	4 8
§4.	The Cauchy Problem for the Schrödinger Equation, Introduction 5	3
	1. Model Problem 1. The Case of Zero Potential	3
	2. Model Problem 2. The Case of a Harmonic Oscillator	7
§5.	The Cauchy Problem for Evolution Equations Related to Convolution	
	Products	8
	1. Setting of Problem	8
	2. The Method of the Fourier Transform	9
	3. The Dirac Equation for a Free Particle	3
§6.	An Abstract Cauchy Problem. Ovsyannikov's Theorem 6	6
Rev	iew of Chapter XIV	2

Chapter XV. Evolution Problems: The Method of Diagonalisation

Introduction	. 73
§1. The Fourier Method or the Method of Diagonalisation	. 74
1. The Case of the Space \mathbb{R}^1 $(n = 1)$. 74
2. The Case of Space Dimension $n = 2$. 94

	3 The Case of Arbitrary Dimension n	99
	Review	103
§2.	Variations. The Method of Diagonalisation for an Operator Having Continuous Spectrum.	104
	1. Review of Self-Adjoint Operators in Hilbert Spaces	104
	2 General Formulation of the Problem	104
	3. A Simple Example of the Problem with Continuous Spectrum.	108
§3.	Examples of Application: The Diffusion Equation	112
	for Neutrons	112
	2 Example of Application 2: The Age Equation in Problems of Slowing	
	Down of Neutrons	118
	3. Example of Application 3: Heat Conduction	122
<u>84.</u>	The Wave Equation: Mathematical Examples and Examples of	
0	Application	126
	1. The Case of Dimension $n = 1, \ldots, \ldots, \ldots, \ldots, \ldots$	126
	2. The Case of Arbitrary Dimension n	143
	3. Examples of Applications for $n = 1$	145
	 Examples of Applications for n = 2. Vibrating Membranes. Application to Elasticity; the Dynamics of Thin Homogeneous 	156
	Beams	159
§5.	The Schrödinger Equation	169
	1. The Cauchy Problem for the Schrödinger Equation in a Domain	
	$\Omega =]0,1[\subset \mathbb{R},\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots]$	170
	2. A Harmonic Oscillator	177
	Review	183
§6.	Application with an Operator Having a Continuous Spectrum: Example	184
Re	view of Chapter XV	186
Ap	pendix. Return to the Problem of Vibrating Strings	186

Chapter XVI. Evolution Problems: The Method of the Laplace Transform

Inti	roduction	202
§1 .	Laplace Transform of Distributions	203
	 Study of the Set I_f and Definition of the Laplace Transform. Properties of the Laplace Transform . Characterisation of Laplace Transforms of Distributions of L₊(R). 	204 210 212
§2.	 Laplace Transform of Vector-valued Distributions	217 218 222

§3. A	pplications to First Order Evolution Problems	225
2. 3. 4.	of First Order in t	225 231 233 243
§4. E	Evolution Problems of Second Order in t	251
1. 2. R	. Direct Method	251 257 261
§5. A	pplications	261
1	. Hydrodynamical Problems	261
2.	. A Problem of the Kinetics of Neutron Diffusion	265
3.	. Problems of Diffusion of an Electromagnetic Wave	267
4	Problems of Wave Propagation	273
5	. Viscoelastic Problems	280
6	. A Problem Related to the Schrödinger Equation	290
7.	A Problem Related to Causality, Analyticity and Dispersion Relations 2	292
8	. Remark 10	295
Revie	w of Chapter XVI	296

Chapter XVII. Evolution Problems: The Method of Semigroups

Introduction	297
Part A. Study of Semigroups	301
 §1. Definitions and Properties of Semigroups Acting in a Banach Space . 1. Definition of a Semigroup of Class C⁰ (Resp. of a Group). 2. Basic Properties of Semigroups of Class C⁰. 	301 301 307
 §2. The Infinitesimal Generator of a Semigroup	310 310 315
 §3. The Hille-Yosida Theorem	321 321 323 327
 §4. The Case of Groups of Class \$\mathcal{C}^0\$ and Stone's Theorem. 1. The Characterisation of the Infinitesimal Generator of a Group of Class \$\mathcal{C}^0\$. 2. Unitary Groups of Class \$\mathcal{C}^0\$ Stope's Theorem. 	353 353 356
2. Unitary Groups of Class & . Stone's Theorem	550

	2. A l'actions of Stopp's Theorem	357
	 Applications of Stone's Theorem 1 and Theorem 2 and Theorem 2. Conservative Operators and Isometric Semigroups in Hilbert Space 	362
	Review	505
§5.	Differentiable Semigroups	365
§6.	Holomorphic Semigroups	367
§7.	Compact Semigroups	388
U	1. Definition and Principal Properties	388 389
	 Characterisation of Compact Semigroups	394
Par	t B. Cauchy Problems and Semigroups	397
§1.	Cauchy Problems	397
§2.	Asymptotic Behaviour of Solutions as $t \rightarrow +\infty$. Conservation and	
	Dissipation in Evolution Equations	406
§3.	Semigroups and Diffusion Problems	412
§4.	Groups and Evolution Equations	420
	1. Wave Problems	420
	2. Schrödinger Type Problems $\dots \dots \dots$ 3. Weak Asymptotic Behaviour for $t \rightarrow \pm \infty$ of Solutions of	424
	Wave Type of Schrödinger Type Problems $\dots \dots \dots \dots \dots$	426
	4. The Cauchy Problem for Maxwell's Equations in an Open Set	
	$\Omega \subset \mathbb{R}^3 \dots \dots$	433
§5.	Evolution Operators in Quantum Physics. The Liouville-von Neumann	
	Equation	439
	1. Existence and Uniqueness of the Solution of the Cauchy Problem for	420
	2. The Evolution Equation of (Bounded) Observables in the Heisenberg	439
	Representation	446
	3. Spectrum and Resolvent of the Operator h	451
§6.	Trotter's Approximation Theorem.	453
	1. Convergence of Semigroups	453
	2. General Representation Theorem	459
Su	mmary of Chapter XVII	465

Chapter XVIII. Evolution Problems: Variational Methods

Introduction. Orientation	• •													467
\$1. Some Elements of Functional Analysis.					•								•	469
1. Review of Vector-valued Distributions 2. The Space $W(a, b, V, V')$	•	٠	·	·	•	•	•	•	•	•	·	•		469
	• •	•	•	•	•	•								472

	3. The Spaces $W(a, b; X, Y)$	479
	4. Extension to Banach Space Framework	482
	5. An Intermediate Derivatives Theorem	493
	6. Bidual. Reflexivity. Weak Convergence and Weak * Convergence .	499
§2.	Galerkin Approximation of a Hilbert Space	503
	1. Definition	504
	2. Examples	504
	3. The Outline of a Galerkin Method	507
§3.	Evolution Problems of First Order in t	509
	1. Formulation of Problem (P)	509
	2. Uniqueness of the Solution of Problem (P)	512
	3. Existence of a Solution of Problem (P)	513
	4. Continuity with Respect to the Data	520
	5. Appendix: Various Extensions – Liftings	521
§4.	Problems of First Order in t (Examples).	523
Ū	1. Mathematical Example 1. Dirichlet Boundary Conditions	524
	2. Mathematical Example 2. Neumann Boundary Conditions	524
	3. Mathematical Example 3. Mixed Dirichlet-Neumann Boundary	
	Conditions	527
	4. Mathematical Example 4. Bilinear Form Depending on Time t	528
	5. Evolution, Positivity and 'Maximum' of Solutions of Diffusion	
	Equations in $L^p(\Omega)$, $1 \leq p \leq \infty$	533
	6. Mathematical Example 5. A Problem of Oblique Derivatives	539
	7. Example of Application. The Neutron Diffusion Equation	542
	8. A Stability Result	548
§5.	Evolution Problems of Second Order in t	552
	1. General Formulation of Problem (P_1)	552
	2. Uniqueness in Problem (P_1)	558
	3. Existence of a Solution of Problem (P_1)	561
	4. Continuity with Respect to the Data	566
	5. Formulation of Problem (P_2)	570
§6.	Problems of Second Order in t. Examples	581
	1. Mathematical Example 1	581
	2. Mathematical Example 2	582
	3. Mathematical Example 3	583
	4. Mathematical Example 4	587
	5. Application Examples	589
§7.	Other Types of Equation	620
	1. Schrödinger Type Equations	620
	2. Evolution Equations with Delay	643
	3. Some Integro-Differential Equations	651
	4. Optimal Control and Problems where the Unknowns are	
	Operators	662

5. The Problem of Coupled Parabolic-Hyperbolic Transmission	•	•	. 670
6. The Method of 'Extension with Respect to a Parameter'	•	·	. 676
Review of Chapter XVIII	-	•	. 679
Bibliography	•	•	. 680
Table of Notations	•	•	. 686
Index			702
	•	•	. 702
Contents of Volumes 1–4, 6	•	•	. 735

•