Table of Contents

Chapter XIX. The Linearised Navier-Stokes Equations

Inti	roduction	1
§1.	The Stationary Navier-Stokes Equations: The Linear Case	1
	2. Existence and Uniqueness Theorem	2 1 8
§2.	The Evolutionary Navier-Stokes Equations: The Linear Case 2	21
	2. Existence and Uniqueness Theorem	21 25 28
§3.	Additional Results and Review	31
	2. The Functional Approach	31 31
	3. The Problem of L ^a Regularity for the Evolutionary Navier-Stokes Equations: The Linearised Case	33

Chapter XX. Numerical Methods for Evolution Problems

§1.	General Points	35
	1. Discretisation in Space and Time	35
	2. Convergence, Consistency and Stability	36
	3. Equivalence Theorem	37
	4. Comments	39
	5. Schemes with Constant Coefficients and Step Size	40
	6. The Symbol of a Difference Scheme	41
	7. The von Neumann Stability Condition	42
	8. The Kreiss Stability Condition	43
	9. The Case of Multilevel Schemes.	44
	10. Characterisation of a Scheme of Order q	44
§2.	Problems of First Order in Time	45
	1. Introduction	45
	2. Model Equation $\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0$ for $x \in \mathbb{R}$	46

	3. The Boundary Value Problem for Equation $\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0 \dots$	54
	3. The Boundary value i robbin for Equation $\frac{\partial t}{\partial t} = \frac{\partial x^2}{\partial x^2}$	
	4. Equation with Variable Coefficients and Schemes with Variable Step-Size	56
	5 The Heat Flow Equation in Two Space Dimensions	59
	6 Alternating Direction and Fractional Step Methods.	62
	7 Internal Approximation Schemes.	65 68
	 8. Integration of Systems of Stiff Differential Equations	74
		75
§3.	Problems of Second Order in Time	75
	1. Introduction $\dots \dots \dots$	
	2. The Model Equation $\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$ for $x \in \mathbb{R}$	76
	3. The Wave Equation in Two Space Dimensions	82
	4. Internal Approximation Schemes	84 86
	5. The Newmark Scheme	86 90
	7. The Wave Equation Coupled to a Heat Flow Equation	92
	8. Comments	95
§4.	The Advection Equation	96
	1. Introduction	96
	2. Some Explicit Schemes for the Cauchy Problem in One Space	07
	Dimension	97 105
	4. Some Explicit Schemes	105
	5. The Problem with Boundary Conditions	110
	6. Phase and Amplitude Error. Schemes of Order Greater than Two .	113
	7. Nonlinear Schemes for the Equation $\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 \dots \dots$	118
	8. Difference Schemes for the Cauchy Problem with Many Space	
	Variables	121
§5.	Symmetric Friedrichs Systems	125
	1. Introduction	125
	2. Summary of Symmetric Friedrichs Systems	125
	3. Finite Difference Schemes for the Cauchy Problem	128
	5. Maxwell's Equations	131 132
	6. Remarks	136
§6	The Transport Equation.	137
	I. Introduction	137
	2. Stationary Equation in One-Dimensional Plane Geometry	139
	 The Evolution Equation in One-Dimensional Plane Geometry The Equation in One-Dimensional Spherical Geometry 	143
	,	146

	5. Iterative Solution of Schemes Approximating the Transport Equation	150
	6. The Two-Dimensional Equation	154
	7. Other Methods	158
	8. Comments	166
§7.	Numerical Solution of the Stokes Problem	167
	1. Setting of Problem	167
	2. An Integral Method	173
	3. Some Finite Difference Methods	177
	4. Finite Element Methods	183
	5. Some Methods Using the Stream Function	194
	6. The Evolutionary Stokes Problem	200

Chapter XXI. Transport

§1.	Introduction. Presentation of Physical Problems	209
	1. Evolution Problems in Neutron Transport	209
	2. Stationary Problems	213
	3. Principal Notation	215
§2.	Existence and Uniqueness of Solutions of the Transport Equation	215
	1. Introduction	215
	2. Study of the Advection Operator $A = -v$. \overrightarrow{v}	218
	3. Solution of the Cauchy Transport Problem	226
	4. Solution of the Stationary Transport Problem in the Subcritical Case	240
	Summary	248
	Appendix of §2. Boundary Conditions in Transport Problems.	
	Reflection Conditions	249
§3.	Spectral Theory and Asymptotic Behaviour of the Solutions	
	of Evolution Problems.	262
	1. Introduction	262
	2. Study of the Spectrum of the Operator $B = -v \cdot V - \Sigma \cdot \dots \cdot \dots$	265
	3. Study of the Spectrum of the Transport Operator in an Open	
	Bounded Set X of \mathbb{R}^n	272
	4. Positivity Properties	285
	5. The Particular Case where All the Eigenvalues are Real	296
	6. The Spectrum of the Transport Operator in a Band.	
	The Lehner-Wing Theorem	301
	7. Study of the Spectrum of the Transport Operator in the	
	Whole Space: $X = \mathbb{R}^n$	306
	8. The Spectrum of the Transport Operator on the Exterior	
	of an "Obstacle".	321
	9. Some Remarks on the Spectrum of T	324
	Summary.	334
	Appendix of §3. The Conservative Milne Problem	335

§4. Explicit Examples	347
1 The Stationary Transport Problem in the Whole Space \mathbb{R}	347 352
Method of "Invariant Embedding"	355 363
§5. Approximation of the Neutron Transport Equation by the Diffusion Equation	368
2. Approximation in the Case of a Monokinetic Model of	368
3. Generalisation of Section 2	372 383
 Convergence of the Principal Eigenvalue of the Transport Operator Calculation of a Corrector for the Principal Eigenvalue of the Transport Operator Application to a Critical Size Problem Numerical Example in the Case of a Band 	388 394 398 403 405
Appendix of §5	408
Bibliography	417
Perspectives	425
Orientation for the Reader	426
List of Equations	429
Table of Notations	431
	447
Contents of Volumes 1-5	481