Mathematical Surveys and Monographs Volume 179

Subgroup Complexes

Stephen D. Smith

American Mathematical Society Providence, Rhode Island

Contents

Preface and Acknowledgments	X
Introduction Aims of the book Optional tracks (B,S,G) in reading the book A preview via some history of subgroup complexes	1 1 1 2
Part 1. Background Material and Examples	7
Chapter 1. Background: Posets, simplicial complexes, and topology 1.1. Subgroup posets	9 10
1.2. Subgroup complexes	17
1.3. Topology for subgroup posets and complexes	23
1.4. Mappings for posets, complexes, and spaces	26
1.5. Group actions on posets, complexes, and spaces	28
1.6. Some further constructions related to complexes	31
Chapter 2. Examples: Subgroup complexes as geometries for simple groups	39
Introduction: Finite simple groups and their "natural" geometries	40
2.1. Motivating cases: Projective geometries for matrix groups	45
2.2. (Option B): The model case: Buildings for Lie type groups	59
Exhibiting the building via parabolic subgroups	61
Associating the Dynkin diagram to the geometry of the building	75
2.3. (Option S): Diagram geometries for sporadic simple groups	82
A general setting for geometries with associated diagrams	82
Some explicit examples of sporadic geometries	86
Part 2. Fundamental Techniques	101
Chapter 3. Contractibility	103
Preview: Cones and contractibility in subgroup posets	104
3.1. Topological background:	
Homotopy of maps, and homotopy equivalence of spaces	104
3.2. Cones (one-step contractibility)	111
3.3. Conical (two-step) contractibility	116
3.4. Multi-step contractibility and collapsibility	127
3.5. (Option G): G -homotopy equivalence and G -contractibility	137
Chapter 4. Homotopy equivalence	141
4.1. Topological background: Homotopy via a contractible carrier	141
4.2. Equivalences via Quillen's Fiber Theorem	147

viii CONTENTS

4.3.	Equivalences via simultaneous removal	151
4.4.	Equivalences via closed sets in products	153
4.5.	Equivalences via the Nerve Theorem	160
4.6.	Summary: The "standard" homotopy type determined by $S_p(G)$	165
Part 3	. Basic Applications	167
Chapter	r 5. The reduced Euler characteristic $\tilde{\chi}$ and variations on vanishing	169
5.1.	Topological background: Chain complexes and homology	169
5.2.	Contractibility and vanishing of homology and $\tilde{\chi}$	176
5.3.	Vanishing of $\tilde{\chi}(\mathcal{S}_p(G)) \mod G _p$: Brown's Theorem	178
5.4.	Vanishing of $\tilde{\chi}(K)$ for suitable K modulo other divisors of $ G $	184
5.5.	Other results on vanishing and non-vanishing	188
5.6.	(Option G): The G -equivariant Euler characteristic	193
Chapter	r 6. The reduced Lefschetz module \tilde{L} and projectivity	197
6.1.	Algebraic background: Projectivity and vanishing of cohomology	197
6.2.	The Brown-Quillen result on projectivity of $\tilde{L}(S_p(G))$	201
6.3.	Webb's projectivity conditions for a more general complex K	204
6.4.	(Option B): The Steinberg module for a Lie type group	214
6.5.	(Option S): Analogous projective modules for other simple groups	217
6.6.	Weaker conditions on K giving relative projectivity of $\tilde{L}(K)$	219
Chapter	r 7. Group cohomology and decompositions	225
7.1.	Topological background:	
	Group cohomology $H^*(G)$ and the classifying space BG	225
7.2.	Webb's decomposition of $H^*(G)$ as an alternating sum over K/G	228
7.3.	(Option G): Approaching $H^*(G)$ via equivariant cohomology of K	236
7.4.	Decomposing BG via a homotopy colimit over K/G	245
7.5.	(Option S): Applications to cohomology of sporadic groups	252
Part 4	. Some More Advanced Topics	257
Chapter	r 8. Spheres in homology and Quillen's Conjecture	259
8.1.	Topological background: Homology via top-dimensional spheres	259
8.2.	Quillen dimension: Non-vanishing top homology for $\mathcal{A}_p(G)$	261
8.3.	Robinson subgroups: Non-vanishing Lefschetz module for $\mathcal{A}_p(G)$	272
8.4.	The Aschbacher-Smith result on Quillen's Conjecture	274
	r 9. Connectivity, simple connectivity, and sphericality	281
9.1.	Topological background:	
	Homotopy groups, n -connectivity, and sphericality	281
9.2.	0-connectivity: Disconnectedness of $S_p(G)$ and strong p-embedding	284
9.3.	1-connectivity: Simple connectivity (and its failure) for $\mathcal{A}_p(G)$	286
9.4.	n-connectivity: Spherical and Cohen-Macaulay complexes	297
	r 10. Local-coefficient homology and representation theory	307
10.1.	. 0	307
10.2.	,	312
10.3.	(Option S): Presheaves on sporadic geometries	322

CONTENTS	
	1.00
	1.8

Chapter 11. Orbit complexes and Alperin's Conjecture	327
11.1. The role(s) of the orbit complex	327
11.2. Orbit-poset formulations of Alperin's Conjecture	328
Bibliography	333
Index	345