Mathematical Surveys and Monographs

Volume 163

The Ricci Flow: Techniques and Applications

Part III: Geometric-Analytic Aspects

Bennett Chow Sun-Chin Chu David Glickenstein Christine Guenther James Isenberg Tom Ivey Dan Knopf Peng Lu Feng Luo Lei Ni

American Mathematical Society Providence, Rhode Island

Contents

Preface What Part III is about Acknowledgments	ix ix x
Contents of Part III of Volume Two	xiii
Notation and Symbols	xvii
 Chapter 17. Entropy, μ-invariant, and Finite Time Singularities Compact finite time singularity models are shrinkers Behavior of μ (g, τ) for τ small Existence of a minimizer for the entropy 1- and 2-loop variation formulas related to RG flow Notes and commentary 	1 1 15 23 31 36
 Chapter 18. Geometric Tools and Point Picking Methods 1. Estimates for changing distances 2. Spatial point picking methods 3. Space-time point picking with restrictions 4. Necks in manifolds with positive sectional curvature 5. Localized no local collapsing theorem 6. Notes and commentary 	39 40 49 57 62 68 76
 Chapter 19. Geometric Properties of κ-Solutions 1. Singularity models and κ-solutions 2. The κ-noncollapsed condition 3. Perelman's κ-solution on the n-sphere 4. Equivalence of 2- and 3-dimensional κ-solutions with and without Harnack 5. Existence of an asymptotic shrinker 6. The κ-gap theorem for 3-dimensional κ-solutions 7. Notes and commentary 	79 80 85 93 104 106 116 120
 Chapter 20. Compactness of the Space of κ-Solutions 1. ASCR and AVR of κ-solutions 2. Almost κ-solutions 3. The compactness of κ-solutions 4. Derivative estimates and some conjectures 	$123 \\ 124 \\ 129 \\ 136 \\ 149$

5.	Notes and commentary	154
Chap 1. 2. 3. 4.	ter 21. Perelman's Pseudolocality Theorem Statement and interpretation of pseudolocality Setting up the proof by contradiction and point picking Local entropies are nontrivial near bad points Contradicting the almost Euclidean logarithmic Soboley	$157 \\ 158 \\ 166 \\ 171$
5.	inequality Notes and commentary	$\begin{array}{c} 178 \\ 179 \end{array}$
Chap 1. 2. 3. 4. 5.	ter 22. Tools Used in Proof of Pseudolocality A point picking method Heat kernels under Cheeger–Gromov limits Upper bound for the local entropy $\int_B v d\mu$ Logarithmic Sobolev inequality via the isoperimetric inequality Notes and commentary	183 183 191 197 206 211
Chap	ter 23. Heat Kernel for Static Metrics	215
1. 2	Construction of the parametrix for the heat kernel on a Riemannian manifold Existence of the heat kernel on a closed Biemannian manifold	216
3. 4. 5. 6.	via parametrix Differentiating a convolution with the parametrix Asymptotics of the heat kernel for a static metric Supplementary material: Elementary tools Notes and commentary	228 238 251 259 263
Chap 1. 2. 3.	ter 24. Heat Kernel for Evolving Metrics Heat kernel for a time-dependent metric Existence of the heat kernel for a time-dependent metric Aspects of the asymptotics of the heat kernel for a	265 266 271
4. 5. 6.	time-dependent metric Characterizing Ricci flow by the asymptotics of the heat kernel Heat kernel on noncompact manifolds Notes and commentary	278 285 290 303
Chap	ter 25. Estimates of the Heat Equation for Evolving Metrics	305
1. 2.	Mean value inequality for solutions of heat-type equations with respect to evolving metrics Li-Yau differential Harnack estimate for positive solutions of	305
3.	neat-type equations with respect to evolving metrics Notes and commentary	$\frac{317}{331}$
Chap 1.	ter 26. Bounds for the Heat Kernel for Evolving Metrics Heat kernel for an evolving metric	333 333
2.	metric	345

vi

 Heat balls and the space-time mean value property Distance-like functions on complete noncompact manifolds Notes and commentary 	363 377 386
Appendix G. Elementary Aspects of Metric Geometry	387
1. Metric spaces and length spaces	388
2. Aleksandrov spaces with curvature bounded from below	401
3. Notes and commentary	412
Appendix H. Convex Functions on Riemannian Manifolds	413
1. Elementary aspects of convex analysis on Euclidean space	413
2. Connected locally convex subsets in Riemannian manifolds	417
3. Generalized gradients of convex functions on Riemannian	
manifolds	433
4. Integral curves to gradients of concave functions	442
5. Notes and commentary	456
Appendix I. Asymptotic Cones and Sharafutdinov Retraction	457
1. Sharafutdinov retraction theorem	457
2. The existence of asymptotic cones	465
3. A monotonicity property of nonnegatively curved manifolds	
within the injectivity radius	468
4. Critical point theory and properties of distance spheres	472
5. Approximate Busemann–Feller theorem	482
6. Equivalence classes of rays and points at infinity	487
7. Notes and commentary	495
Appendix J. Solutions to Selected Exercises	497
Bibliography	
Index	513

CONTENTS

vii