Contents

Pı	Preface		
		Part I Basic concepts: electrons and phonons	
1	Conc	3	
	1.1	Classification of solids	3
	1.2	A first model of a solid: interacting atoms	4
	1.3	A second model: elementary excitations	6
	1.4	Elementary excitations associated with solids and liquids	7
	1.5	External probes	8
	1.6	Dispersion curves	9
	1.7	Graphical representation of elementary excitations	
		and probe particles	13
	1.8	Interactions among particles	13
2	Electrons in crystals		20
	2.1	General Hamiltonian	20
	2.2	The Born–Oppenheimer adiabatic approximation	21
	2.3	The mean-field approximation	22
	2.4	The periodic potential approximation	22
	2.5	Translational symmetry, periodicity, and lattices	23
3	Electronic energy bands		31
	3.1	Free electron model	31
	3.2	Symmetries and energy bands	33
	3.3	Nearly-free electron model	39
	3.4	Tight-binding model	43
	3.5	Electron (or hole) velocity in a band and the f-sum rule	48
	3.6	Periodic boundary conditions and summing over band	
		states	52
	3.7	Energy bands for materials	55
4	Lattice vibrations and phonons		63
	4.1	Lattice vibrations	63
	4.2	Second quantization and phonons	71

vii

	4.3	Response functions: heat capacity	77
	4.4	Critical points and van Hove singularities	79 84
		orment points and van move singularides	-04
Pa	art i Pr	oblems	91
		Part II Electron interactions, dynamics, and responses	
5	Elec	tron dynamics in crystals	101
	5.1	Effective Hamiltonian and Wannier functions	101
	5.2	Electron dynamics in the effective Hamiltonian approach	103
	5.3	Shallow impurity states in semiconductors	107
	5.4	Motion in external fields	108
	5.5	Effective mass tensor	113
	5.6	Equations of motion, Berry phase, and Berry curvature	114
6	Man	y-electron interactions: the homogeneous interacting electron gas	
	and	beyond	119
	6.1	The homogeneous interacting electron gas or jellium	
		model	121
	6.2	Hartree-Fock treatment of the interacting electron gas	123
	6.3	Ground-state energy: Hartree–Fock and beyond	126
	6.4	Electron density and pair-correlation functions	130
	6.5	$g(\mathbf{r}, \mathbf{r}')$ of the interacting electron gas	132
	6.6	The exchange-correlation hole	135
	6.7	The exchange-correlation energy	136
7	Dens	ity functional theory (DFT)	141
	7.1	The ground state and density functional formalism	142
	7.2	The Kohn–Sham equations	144
	7.3	Ab initio pseudopotentials and density functional theory	150
	7.4	Some applications of DFT to electronic, structural, vibrational,	
		and related ground-state properties	152
8	The o	lielectric function for solids	159
	8.1	Linear response theory	159
	8.2	Self-consistent field framework	163
	8.3	The RPA dielectric function within DFT	164
	8.4	The homogeneous electron gas	166
	8.5	Some simple applications	169
	8.6	Some other properties of the dielectric function	173
Pa	rt II Pr	oblems	178

viii

Part III Optical and transport phenomena

9	Electronic transitions and optical properties of solids	185
	9.1 Response functions	185
	9.2 The Drude model for metals	189
	9.3 The transverse dielectric function	192
	9.4 Interband optical transitions in semiconductors and insulators	196
	9.5 Electron-hole interaction and exciton effects	201
10	Electron–phonon interactions	220
	10.1 The rigid-ion model	220
	10.2 Electron-phonon matrix elements for metals, insulators,	
	and semiconductors	224
	10.3 Polarons	229
11	Dynamics of crystal electrons in a magnetic field	235
	11.1 Free electrons in a uniform magnetic field and Landau levels	235
	11.2 Crystal electrons in a static B -field	237
	11.3 Effective mass and real-space orbits	239
	11.4 Quantum oscillations: periodicity in $1/B$ and the de Haas-van	
	Alphen effect in metals	241
12	Fundamentals of transport phenomena in solids	248
	12.1 Elementary treatment of magnetoresistance and the Hall effect	248
	12.2 The integer quantum Hall effect	257
	12.3 The Boltzmann equation formalism and transport in real materials	264
	12.4 Electrical and thermal transport with the linearized	
	Boltzmann equation	271
Pai	rt III Problems	278
	Part IV Many-body effects, superconductivity, magnetism, and lower-dimensional systems	
13	Using many-body techniques	287
	13.1 General formalism	287
	13.2 Interacting Green's functions	291
	13.3 Feynman diagrams and many-body perturbation theory techniques	298
14	Superconductivity	305
	14.1 Brief discussion of the experimental background	305
	14.2 Theories of superconductivity	311
	14.3 Superconducting quasiparticle tunneling	349

	14.4	Spectroscopies of superconductors	356		
	14.5	More general solutions of the BCS gap equation	360		
	14.6	Field theoretical methods and BCS theory	368		
15	Magnetism				
	15.1	Background	372		
	15.2	Diamagnetism	372		
	15.3	Paramagnetism	374		
	15.4	Ferromagnetism and antiferromagnetism	377		
	15.5	Magnetism in metals	386		
	15.6	Magnetic impurities and local correlation effects	389		
16	Reduced-dimensional systems and nanostructures				
	16.1	Density of states and optical properties	393		
	16.2	Ballistic transport and quantization of conductance	399		
	16.3	The Landauer formula	404		
	16.4	Weak coupling and the Coulomb blockade	406		
	16.5	Graphene, carbon nanotubes, and graphene nanostructures	409		
	16.6	Other quasi-2D materials	421		
Part IV Problems			424		
Re	feren	ces	434		
In	Index				