
Contents 

Foreword ix 
Preface xi 

PART I DESCRIPTION AND SPECIFICATION 1 
David Lorge Parnas, P.Eng 

1 Introduction John McLean 7 

Using Assertions About Traces to Write Abstract 
Specifications for Software Modules 9 
Wolfram Bartussek and David L. Parnas 
1.1 Introduction 9 
1.2 A Formal Notation for Specification Based on Traces 12 
1.3 Some Simple Examples 15 
1.4 Discussion of the Simple Examples 17 
1.5 A Compressed History of the Development of an 

Abstract Specification 19 
1.6 Conclusions 26 

2 Introduction William Wadge 29 

Less Restrictive Constructs for Structured Programs 31 
David L. Parnas and William Wadge 
2.1 Abstract 31 
2.2 Introduction 31 
2.3 The State of a Computing Machine 32 
2.4 Programs 32 
2.5 Program Specifications 32 
2.6 Primitive Programs 33 
2.7 Control Constructs and Constructed Programs 34 
2.8 Defining the Semantics of Constructed Programs 34 
2.9 The Value of a Program 34 
2.10 The Syntax of the Constructs 34 
2.11 Notation 35 
2.12 Guard Semantics 35 
2.13 The Semantics of a Limited Component 36 
2.14 The Semantics of Limited Component Lists 36 
2.15 The Semantics of "; " 36 
2.16 The Semantics of "stop", "go" and "init" 36 



2.17 Semantics of the Iterative Construct (it ti) 
2.18 The Semantics of Parentheses 
2.19 The Value of "#" 
2.20 The Value Stack 
2.21 Exits and Entrances 
2.22 A Very Simple Example Done Three Ways 
2.23 The DEED Problem 
2.24 Conclusions 

Introduction Martin van Emden 

Predicate Logic for Software Engineering 
David Lorge Parnas 
3.1 Abstract 
3.2 Introduction 
3.3 The Structure of This Paper 
3.4 Comparison with Other Work 
3.5 Basic Definitions 
3.6 The Syntax of Logical Expressions 
3.7 The Meaning of Logical Expressions 
3.8 Examples of the Use of This Logic in 

Software Documentation 
3.9 Conclusions 

Introduction Joanne Atlee 

Tabular Representations in Relational Documents 
Ryszard Janicki, David Lorge Parnas, Jeffery Zucker 
4.1 Abstract 
4.2 A Relational Model of Documentation 
4.3 Industrial Experience with Relational Documentation 
4.4 Why Use Tabular Representations of Relations? 
4.5 Formalisation of a Wide Class of Tables 
4.6 Transformations of Tables of One Kind to Another 
4.7 Conclusions 

Introduction Alt Mili 

Precise Description and Specification of Software 
D.L. Parnas 
5.1 Abstract 
5.2 On Foundational Research 
5.3 Language Is Not the Issue 
5.4 A Polemic About Four Words 
5.5 Four Types of Software Products 
5.6 Programs and Executions 
5.7 A Mathematical Interlude: LD-Relations 
5.8 Program Construction Tools 
5.9 Describing Programs 



Contents vii 

5.10 Specifying Programs 102 
5.11 Objects Versus Programs 104 
5.12 Descriptions and Specifications of Objects 104 
5.13 Conclusions 105 

6 Introduction Kathyrn Heninger Britton 107 

Specifying Software Requirements for Complex Systems: 
New Techniques and Their Application 111 
Kathryn L. Heninger 
6.1 Abstract 111 
6.2 Introduction 111 
6.3 A-7 Program Characteristics 112 
6.4 Requirements Document Objectives 113 
6.5 Requirements Document Design Principles 114 
6.6 Techniques for Describing Hardware Interfaces 116 
6.7 Techniques For Describing Software Functions 121 
6.8 Techniques for Specifying Undesired Events 130 
6.9 Techniques for Characterizing Types of Changes 131 
6.10 Discussion 131 
6.11 Conclusions 132 

PART II SOFTWARE DESIGN 137 
David Lorge Parnas, P.Eng 

7 Introduction David M. Weiss 143 

On the Criteria to Be Used in Decomposing Systems 
into Modules 145 
D.L. Parnas 
7.1 Abstract 145 
7.2 Introduction 145 
7.3 A Brief Status Report 146 
7.4 Expected Benefits of Modular Programming 146 
7.5 What Is Modularization? 146 
7.6 Example System 1: A KWIC Index Production System 146 
7.7 Hierarchical Structure 153 
7.8 Conclusions 154 

8 Introduction Paul C. Clements 157 

On a "Buzzword": Hierarchical Structure 161 
David Parnas 
8.1 Abstract 161 
8.2 Introduction 161 
8.3 General Properties of All Uses of the Phrase 

"Hierarchical Structure" 161 
8.4 Summary 168 



Introduction Daniel Siewiorek 
Use of the Concept of Transparency in the Design of 
Hierarchically Structured Systems 
D.L. Parnas and D.P. Siewiorek 
9.1 Abstract 
9.2 Introduction 
9.3 The "Top Down" or "Outside In" Approach 
9.4 "Transparency" of an Abstraction 
9.5 Preliminary Example 
9.6 "Register" for Markov Algorithm Machine 
9.7 A Hardware Example 
9.8 An Unsolved Transparency Problem from the Operating 

System Area 
9.9 "Suggestive Transparency" 
9.10 "Misleading Transparency" 
9.11 Outside In and Bottom Up Procedures in Combination 

Introduction Ralph Johnson 

On the Design and Development of Program Families 
David L. Parnas 
10.1 Abstract 
10.2 Introduction 
10.3 Motivation for Interest in Families 
10.4 Classical Method of Producing Program Families 
10.5 New Techniques 
10.6 Representing the Intermediate Stages 
10.7 Programming by Stepwise Refinement 
10.8 Technique of Module Specification 
10.9 Comparison Based on the KW1C Example 
10.10 Comparative Remarks Based on Dijkstra's Prime Program 
10.11 Comparative Remarks Based on an Operating 

System Problem 
10.12 Design Decisions in Stage 1 
10.13 Stage 3 
10.14 How the Module Specifications Define a Family 
10.15 Which Method to Use 
10.16 Relation of the Question of Program Families to 

Program Generators 
10.17 Conclusions 
10.18 Historical Note 

Introduction John Shore 

Abstract Types Defined as Classes of Variables 
D.L. Parnas, J.E. Shore, and DM. Weiss 
11.1 Introduction 
11.2 Previous Approaches 
11.3 Motivations for Type Extensions 



Contents jx 

11.4 A New Approach 220 
11.5 Applying These Concepts to Designing a Language 226 

12 Introduction Stuart Faulk 229 

Response to Undesired Events in Software Systems 231 
D.L. Parnas and H. Wiirges 
12.1 Abstract 231 
12.2 Introduction 231 
12.3 Difficulties Introduced by a "Leveled Structure" 233 
12.4 The Effect of Undesired Events on Code Complexity 233 
12.5 Impossible Abstractions 234 
12.6 Error Types and Direction of Propogation 235 
12.7 Continuation After UE "Handling" 236 
12.8 Specifying the Error Indications 237 
12.9 Redundancy and Efficiency 240 
12.10 Degrees of Undesired Events 241 
12.11 Examples 244 
12.12 Conclusions .244 
Appendix 12.A Annotated Example of Module Design in Light of Errors 247 

13 Introduction James Horning 255 

Some Software Engineering Principles 257 
David L. Parnas 
13.1 Abstract 257 
13.2 Introduction 257 
13.3 What Is a Well-Structured Program? 258 
13.4 What Is a Module? 259 
13.5 Two Techniques for Controlling the Structure of 

Systems Programs 260 
13.6 Results 261 
13.7 Error Handling 262 
13.8 Hierarchical Structure and Subsetable Systems 263 
13.9 Designing Abstract Interfaces 263 
13.10 Conclusions 264 

14 Introduction Barry Boehm 267 

Designing Software for Ease of Extension and 
Contraction 269 
David L. Parnas 
14.1 Abstract 269 
14.2 Introduction 269 
14.3 Software as a Family of Programs 270 
14.4 How Does the Lack of Subsets and Extensions 

Manifest Itself? 271 
14.5 Steps Toward a Better Structure 273 
14.6 Example: An Address-Processing Subsystem 279 



X 
CONTENTS 

14.7 Some Remarks on Operating Systems: 4 

Why Generals Are Superior to Colonels 
14.8 Summation 286 

15 Introduction James Waldo 291 

A Procedure for Designing Abstract Interfaces for - m 
Device Interface Modules ' " 295 
Katbryn Heninger Britton, R. Alan Parker, David L. Parnas 
15.1 Abstract 295 
15.2 Introduction 295 
15.3 Objectives 296 
15.4 Definitions 299 
15.5 Design Approach 201 
15.6 Design Problems 307 
15.7 Summary 213 

16 Introduction David M. Weiss 315 

The Modular Structure of Complex Systems 319 
D.L. Parnas, P.C. Clements, and D.M. Weiss 
16.1 Abstract 319 
16.2 Introduction 319 
16.3 Background and Guiding Principles 321 
16.4 A-7E Module Structure 325 
16.5 Conclusions 335 

17 Introduction Katbryn Heninger Britton 337 

Active Design Reviews: Principles and Practices 339 
David L. Parnas and David M. Weiss 
17.1 Abstract 339 
17.2 Introduction 339 
17.3 Objectives of Design Reviews 340 
17.4 Conventional Design Reviews 341 
17.5 A More Effective Review Process 343 
17.6 Conclusions 350 

18 Introduction Barry Boehm 353 

A Rational Design Process: How and Why to Fake It 355 
David Lorge Parnas and Paul C. Clements 
18.1 Abstract 
18.2 The Search for the Philosopher's Stone: 

Why Do We Want a Rational Design Process? 
18.3 Why Will a Software Design "Process" Always Be 

an Idealization? 
18.4 Why Is a Description of a Rational Idealized Process 

Useful Nonetheless? 

355 

355 

356 

357 



Contents x\ 

18.5 What Should the Description of the Development 
Process Tell Us? 358 

18.6 What Is the Rational Design Process? 358 
18.7 What Is the Role of Documentation in This Process? 364 
18.8 Faking the Ideal Process 366 
18.9 Conclusion 367 

19 Introduction A. John van Schouwen 369 

Inspection of Safety-Critical Software Using 
Program-Function Tables 371 
David Lorge Parnas 
19.1 Abstract 371 
19.2 Introduction 371 
19.3 Safety-Critical Software in the Darlington Nuclear Power 

Generating Station 373 
19.4 Why Is Software Inspection Difficult? 374 
19.5 Functional Documentation 375 
19.6 Program-Function Tables 376 
19.7 The Inspection Process 378 
19.8 Hazard Analysis Using Functional Documentation 380 
19.9 Conclusions 380 

PART III CONCURRENCY AND SCHEDULING 383 
David Lorge Parnas, P.Eng 

20 Introduction Pierre-Jacques Courtois 387 

Concurrent Control with "Readers" and "Writers" 389 
P.J. Courtois, F. Heymans, and D.L. Parnas 
20.1 Abstract 389 
20.2 Introduction 389 
20.3 Problem 1 389 
20.4 Problem 2 390 
20.5 Final Remarks 391 

21 Introduction Stuart Faulk 393 

On a Solution to the Cigarette Smoker's Problem 
(without conditional statements) 395 
D.L. Parnas 
21.1 Abstract 395 
21.2 Introduction 395 
21.3 Comments 397 
21.4 On Patil's Proof 397 
21.5 Patil's Result 397 
21.6 On a Complication Arising from the Introduction of 

Semaphore Arrays 398 



xii 
CONTENTS 

21.7 On the Yet Unsolved Problem . . ' ' ' ' *98 
21.8 On More Powerful Primitives J 

22 Introduction Stuart Faulk n 1 ^03 

On Synchronization in Hard-Real-Time Systems 407 
Stuart R. Faulk and David L. Parnas 
22.1 Abstract \ .>•. t "1;- o- 407 
22.2 Introduction 407 
22.3 The Need for a Separation of Concerns 408 
22.4 A Two-Level Approach to Synchronization 410 
22.5 Considerations at the Lower Level * v, ;; 410 
22.6 The Lower-Level Synchronization Primitives } 411 
22.7 Considerations at the Upper Level - 413 
22.8 The STE Synchronization Mechanisms 418 
22.9 Implementation in Terms of the Lower-Level Mechanism 426 
22.10 The Pre-Run-Time Scheduler 428 
22.11 Why Another Synchronization Mechanism? , , 430 
22.12 Experience and Results ; 430 
22.13 Summary p \ • 432 

23 Introduction Aloysius Mok >o 437 

Scheduling Processes with Release Times, Deadlines, 
Precedence, and Exclusion Relations 439 
]ia Xu and David Lorge Parnas • ». •. 
23.1 Abstract 439 
23.2 Introduction . 439 
23.3 Overview of the Algorithm 442 
23.4 Notation and Definitions 444 
23.5 How to Improve on a Valid Initial Solution . 447 
23.6 Searching for an Optimal or Feasible Solution 449 
23.7 Empirical Behavior of the Algorithm 451 
23.8 Conclusions 452 
Appendix 23.A An Implementation of the Procedure for 

Computing a Valid Initial Solution 455 
Appendix 23.B An Implementation of the Main Algorithm 457 
Appendix 23.C Examples 1-5 460 

PART IV COMMENTARY 467 

David Lorge Parnas, P.Eng 

24 Introduction James Horning AT\ 

Building Reliable Software in BLOWHARD 473 
David L. Parnas 
24.1 Introduction A1X 
24.2 On "Building In" ^ 



Contents xiii 

24.3 Four Views of a Programming Language 474 
24.4 Resolving Conflicts of Viewpoint in the Design of 

BLOWHARD 474 
24.5 What Is BLOWHARD? 475 
24.6 Why This Farce? 475 

25 Introduction John Shore 477 

The Impact of Money-Free Computer Assisted 
Barter Systems 479 
David L. Parnas 
25.1 Introduction 479 
25.2 Money Versus Barter as a Mechanism for Exchanging Our 

Current Goods and Services 480 
25.3 Money Versus Barter for Future Sales? 484 
25.4 What Would Barter Mean for Foreign Trade? 486 
25.5 Are CABS a Dream or Are They Current Technology? 487 
25.6 Turning Theory into Practice 488 
25.7 What Would Be the Net Effect of the Use of CABS? 490 
25.8 Can a Materialistic, "Rational", System Be Humane? 490 
25.9 CABS and the Moral Illnesses in the Bishop's Report 491 

26 Introduction David M. Weiss 493 

Software Aspects of Strategic Defense Systems 497 
David Lorge Parnas 
26.1 Abstract 497 
26.2 Introduction 497 
26.3 Why Software Is Unreliable 499 
26.4 Why the SDI Software System Will Be Untrustworthy 501 
26.5 Why Conventional Software Development Does Not 

Produce Reliable Programs 504 
26.6 The Limits of Software Engineering Methods 506 
26.7 Artificial Intelligence and the Strategic Defense Initiative 510 
26.8 Can Automatic Programming Solve the SDI 

Software Problem? 512 
26.9 Can Program Verification Make the SDI Software Reliable? 514 
26.10 Is SDIO an Efficient Way to Fund Worthwhile Research? 516 

27 SDI: A Violation of Professional Responsibility 519 
David Lorge Parnas 
27.1 Introduction 519 
27.2 SDI Background 520 
27.3 The Role of Computers 522 
27.4 My Decision to Act 523 
27.5 Critical Issues 524 
27.6 Broader Questions 528 



Introduction Leonard L. Tripp > 

The Professional Responsibilities of 
Software Engineers 
David Lorge Parnas -
28.1 Abstract 
28.2 Personal Responsibility, Social Responsibility, and 

Professional Responsibility 
28.3 The Social Responsibility of Scientists and Engineers 
28.4 The Professional Responsibilities of Engineers 
28.5 What Are the Obligations of the Engineer? 
28.6 Professional Practice in Software Development 
28.7 A Simple Example, Pacemakers •*» 
28.8 Other Concerns 
28.9 The "Know How" Isn't There 
28.10 How to Improve the Level of Professionalism in 

Software Development 

Introduction Victor R. Basili 

Software Aging 
David Lorge Parnas ^ 
29.1 Abstract 
29.2 What Nonsense! 
29.3 The Causes of Software Aging 
29.4 Kidney Failure 
29.5 The Costs of Software Aging 
29.6 Reducing the Costs of Software Aging 
29.7 Preventive Medicine 
29.8 Software Geriatrics 
29.9 Planning Ahead 
29.10 Barriers to Progress 
29.11 Conclusions for Our Profession 

Introduction Richard Kemmerer 

On ICSE's "Most Influential" Papers 
David Lorge Parnas 
30.1 Background 
30.2 What Are the Best Papers of Our Most Important Software 

Engineering Conference? 
30.3 We Must Be Doing Something(s) Wrong! 
30.4 We Need to Change Something 
30.5 Conclusions 



Contents xv 

3 A Introduction Daniel Hoffman 577 

Teaching Programming as Engineering 579 
David Lorge Parnas 
31.1 Introduction 579 
31.2 Programming Courses and Engineering 579 
31.3 The Important Characteristics of Programming Courses 580 
31.4 The Role of Mathematics in Engineering 581 
31.5 The Role of Programming in Engineering, Business, 

and Science 581 
31.6 The Content of Most "Standard" Programming Courses 582 
31.7 Programming Courses Are Not Science Courses 582 
31.8 A New Approach to Teaching Programming 584 
31.9 The Mathematics Needed for Professional Programming 584 
31.10 Teaching Programming with This Mathematical 

Background 587 
31.11 Experience 590 
31.12 Conclusions 591 

32 Introduction Victor R. Basili 593 

Software Engineering: An Unconsummated 
Marriage 595 
David Lorge Parnas 
32.1 Software Engineering Education 595 

33 Introduction John Shore 597 

Who Taught Me About Software Engineering 
Research? 599 
David Lorge Parnas, P.Eng. 
33.1 Whom to Thank? 599 
33.2 Everard M. Williams 599 
33.3 Alan J. Perlis 601 
33.4 Leo Aldo Finzi 602 
33.5 Harlan D. Mills 603 
33.6 Conclusions 605 

PART V BIBLIOGRAPHY 607 

Bibliography 609 

Biographies 625 

Credits 631 

Index 635 


