CONTENTS

Co	ntril	putors	хi
re	face	?	xiii
1		rect Electron Detectors McMullan, A.R. Faruqi, and R. Henderson	1
	1.	Introduction	1
	2.	Past	2
	3.	Present	4
	4.	Future	13
	Ret	ferences	15
2.	. Sp	ecimen Behavior in the Electron Beam	19
	R.N	Λ. Glaeser	
	1.	Introduction	20
	2.	High-Energy Electrons Are a Form of Ionizing Radiation as Well as Being	
		a Form of Short-Wavelength Radiation That Can Be Focused	21
	3.	Biological Molecules Become Structurally Damaged When Irradiated	25
	4.	Vitreous Ice Also Becomes Structurally Damaged by Ionizing Radiation	30
	5.	Bubbling of Hydrated Biological Specimens Becomes Apparent at High	
		Electron Exposure	34
	6.	Cryo-Specimens Exhibit Collective Beam-Induced Movement When Irradiated	37
	7.	More Than One Mechanism May Contribute to Beam-Induced Motion	40
	8.	Irradiation Can Produce Electrostatic Charging of the Specimen	42
	9.	Summary and Future Directions	46
	Acl	knowledgments	47
	Ref	erences	47
3.	Sp	ecimen Preparation for High-Resolution Cryo-EM	51
	L.A	. Passmore and CJ. Russo	
	1.	Introduction	52
	2.	A Systematic Approach to Specimen Preparation	53
	3.	Support Choice, Handling, and Storage	62
	4.	Contamination and Cleaning	65
	5.	Continuous Films of Amorphous Carbon and Graphene	67
	6.	Surface Treatments	73

vi	Contents

	7. Vitrification	76
	8. Data Collection	80
	Acknowledgments	84
	References	84
4.	Strategies for Automated CryoEM Data Collection Using Direct	
	Detectors	87
	A. Cheng, Y.Z. Tan, V.P. Dandey, C.S. Potter, and B. Carragher	
	1. Introduction	88
	2. Practical Considerations in Instrumentation Configuration	90
	3. Automated Data Acquisition Using DD Cameras	93
	4. Challenges Arising from DDs and High-Resolution Biological CryoEM	95
	5. Future Outlook for DD Integration with Automated Data Collection	100
	Acknowledgments	101
	References	101
5	Processing of Cryo-EM Movie Data	103
٠.	Z.A. Ripstein and J.L. Rubinstein	.05
		100
	1. Introduction	103
	2. Motioncorr	107
	3. alignframes_Imbfgs and alignparts_Imbfgs	109
	4. Unblur	112
	5. Optical Flow	114
	6. Particle Polishing in <i>Relion</i>	116
	7. Summary	121
	8. Future Prospects	122
	Acknowledgments	123
	References	123
6.	Processing of Structurally Heterogeneous Cryo-EM Data	
	in RELION	125
	S.H.W. Scheres	
	1. Introduction	126
	2. New Algorithmic Concepts	128
	3. A Typical High-Resolution Structure Determination Procedure	134
	4. Dealing with Structural Heterogeneity	142
	5. Outlook	154
	Acknowledgments	154
	References	154

Contents vii

7. Single-Particle Refinement and Variability Analysis in EMAN2.1	159
S.J. Ludtke	
1. Introduction	160
2. Single-Particle Reconstruction	164
3. Assessing a Refinement and Identifying Variability	167
4. Conformational and Compositional Variability	172
5. Interactive Tools	184
6. Conclusion	186
Acknowledgments	187
References	187
8. Frealign: An Exploratory Tool for Single-Particle Cryo-EM	191
N. Grigorieff	
1. Introduction and Philosophy	192
2. Frealign Elements at a Glance	193
3. Algorithms	199
4. Typical Application Scenarios	201
5. Tuning Options	220
6. Related Software	223
References	224
9. Testing the Validity of Single-Particle Maps at Low and High Resolution	227
P.B. Rosenthal	
1. Introduction	228
2. Validation at Low Resolution: Tilt-Pair Analysis and Orientation Determination	
3. Validation of Map Resolution	239
4. Resolution Assessment of a Map with an Atomic Coordinate Model	245
5. Contrast Restoration	246
6. Local Resolution Assessment	247
7. Summary of Validation Tests and Future Prospects	249
Acknowledgments	250
References	250
10. Tools for Model Building and Optimization into Near-Atomic	
Resolution Electron Cryo-Microscopy Density Maps	255
F. DiMaio and W. Chiu	
1. Introduction	255
2. De Novo Model Building	258

3	. Model Optimization	262
4	. Model Validation	269
5	. Discussion	273
Α	cknowledgments	274
R	eferences	274
11. R	efinement of Atomic Structures Against cryo-EM Maps	277
G	.N. Murshudov	
1	. Introduction	278
2	. Target Function	281
3	Variance of Observational Noise	286
4	. Map Calculation	288
5	. Crossvalidation	290
6	Effect of Oversharpening	292
7	. $2F_o - F_c$ and Other Crystallographic Maps	294
8	Form Factors	295
-	Conclusions	299
Α	cknowledgments	302
R	eferences	302
12 (ryo-EM Structure Determination Using Segmented	
	elical Image Reconstruction	307
	A. Fromm and C. Sachse	
1.	Introduction	308
2.	Architecture of Helical Assemblies	310
3.	Segmented Helical Image Analysis	311
4.	Iterative Helical Structure Refinement	315
5.	High-Resolution Helical Image Reconstructions	317
6	The Use of Direct Electron Detectors for Helical Structures	319
7.	Validation of Helical Structures	322
8	Conclusion	323
Α	cknowledgments	324
R	eferences	325
13. C	ryo-Electron Tomography and Subtomogram Averaging	329
W	. Wan and J.A.G. Briggs	
1.	Introduction	330
2.		333
3.		337

Contents	ix

4.	Subtomogram Averaging	345	
5.	Classification in Subtomogram Averaging	351	
6.	Maximum-Likelihood Approaches for Subtomogram Alignment and		
	Classification	355	
7.	Combinations of Subtomogram Averaging and 2D Approaches	357	
8.	Software for Subtomogram Averaging	360	
9.	Conclusions	361	
Ac	knowledgments	362	
Re	ferences	362	
14. Hi	gh-Resolution Macromolecular Structure Determination by		
M	icroED, a cryo-EM Method	369	
J.A	A. Rodriguez and T. Gonen		
1.	Introduction	370	
2.	Background	371	
3.	Sample Preparation	378	
4.	Instrumentation and Data Collection	380	
5.	Processing of MicroED Data	384	
6.	Summary and Outlook	388	
Ac	knowledgments	388	
	ferences	389	
15. Da	atabases and Archiving for CryoEM	393	
A.	Patwardhan and C.L. Lawson		
1.	Introduction	394	
2.	Resources	399	
3.	Deposition and Annotation	402	
4.	Recent Community-Wide Initiatives	403	
5.	Challenges and Opportunities	408	
Ac	knowledgments	409	
Re	ferences	410	
Author	Index	413	
Subject	Subject Index		