Contents

Pre	eface		vii		
1.	The Basic Ideas				
	1.1 1.2	Quantum mechanics and summing up amplitudes Double slit experiment	$\frac{1}{3}$		
	1.3	Infinite slits experiment and paths correspondence	5		
2.	The	Path Integral for Quantum Mechanics	7		
	$2.1 \\ 2.2$	Time slicing: From infinitesimal to finite time intervals Re-derivation of the Feynman path integrals via	7		
		the Trotter formula	8		
	2.3	Continuous paths but nowhere differentiable			
	2.4	Commutation relations	12		
	2.5	Free particle	12		
	2.6	Quadratic potentials and harmonic oscillator	14		
	2.7	Perturbation theory via path integrals	20		
3.	Intro	oduction to the Semiclassical Approximation	25		
	3.1	Ordinary WKB method	26		
		3.1.1 Preliminary section	26		
		3.1.2 Hamilton-Jacobi equation	28		
		3.1.3 WKB solutions	30		
		3.1.4 Connection formulas	33		
	3.2	WKB in the path integral language	34		
		3.2.1 Stationary phase method	34		
		3.2.2 Jacobi equation and Van Vleck determinant	36		

	3.3	The semiclassical propagator		
		3.3.1	Steady phase approximation method for the path	
			integral \ldots \ldots \ldots \ldots	41
		3.3.2	Approximated path integral evaluation	42
		3.3.3	Functional determinants	45
		3.3.4	Final expression	46
4.	Wigi	ner Fun	actions and its associated Path Integral	49
	4.1	Marin	nov's path integral for Wigner functions	53
	4.2		classical expansion in the Marinov's path integral	57
5.	Clas	sical M	echanics and its associated Path Integral	65
	5.1	The v	work of Koopman-von Neumann (KvN) on the	
		opera	torial version of classical mechanics	65
	5.2	Path	Integrals for classical mechanics (CPI) from the KvN	
			alism	67
	5.3	Carts	an calculus via the CPI	72
	5.4	Geor	netric quantization	76
		5.4.1	Dequantization in the q and p -polarizations and	
			supertime	81
		5.4.2		
			tions	90
		5.4.3		94
	5.5	Supe	erposition in classical mechanics	. 99
1	Append	lix A	Asynchronous variation of the action	105
	Append	dix B	The equation for the function $f(t_2, t_1)$ intro-	
duced in Sectio			Section 2.6	111
	Appen	dix C	Variational calculus in the discrete formalism	110
Appendix E			and one encourts in the discrete formatism	113
		idix D	Brief review of Grassmann variables	117
	Apper	ıdix E	Dimensional analysis of θ and $\overline{\theta}$	121
	Appe	ndix F	Schrödinger and Heisenberg picture in $ heta$ and $ar{ heta}$	125
				140

	Contents	xi
Appendix G resentati	Classical path integral in the momentum rep- ion	129
Appendix H	Classical path integral via the Trotter formula	133
Appendix I	Ordering problems in the classical path integral	137
Bibliography		141