Contents

			xvii		3.	Viruses as Quasispecies	
Intro	duct	tion	xix		4.	· · · · · · · · · · · · · · · · · · ·	
						Mechanisms	23
					5.	· · · · · · · · · · · · · · · · · · ·	23
					6.	Other Viral Determinants of Mutation Rate	
1.	Ge	enome Stability: An Evolutionary			7.		25
		rspective			8.	The Effect of Replication Mode	
		•				on Mutation Frequency	27
	I. K	<i>(ovalchuk</i>			9.		
	1.	Introduction	1			Mutation Rate	27
	2.	Evolution Theories and My Reflection on			10.	, 0	
		Them	2			Robustness in RNA Viruses	28
	3.	The Role of Symbiosis in Genome Evolution	3		11.	S S	29
		3.1 Changes in the Structure of the			12.	,	
		Organellar Genome Over Time	4			Virus-Host "Arms Race"	30
		3.2 Mutation Rates in Organellar			13.	0 0	
		Genomes and Adaptive Evolution	4			of RNA Viruses	31
		3.3 Symbiotic Interactions Between			14.		31
		Viruses, Prokaryotes, and Eukaryotes:				Glossary	31
		The Role of Transposable Elements	5			List of Abbreviations	32
	4.	Fixation of a Mutant Allele in a Population	6			References	33
	5.	Evolution of Mutation Rates	7		_		
		5.1 Evolution of Somatic Mutation Rates	9	3.	Ge	nome Instability in DNA Viruses	
	6.	Genome Instability: Is It Random?	11		R. Sanjuán, M. Pereira-Gómez and J. Risso		
		6.1 A Bias in Mutations in Different					
		Genomic Regions	12			Overview	37
	7.	Genome Evolution May Start From			2.	Rates of Spontaneous Mutation and	
		Changes at the Level of DNA Methylation			_	Genetic Diversity of DNA Viruses	38
		or Chromatin Modification	13		3.	Mutator Phenotypes Produced	
	8.	Conclusion	15			by Low-Fidelity DNA Virus Polymerases	38
		Glossary	15			DNA Coliphages and the MMR System	39
		List of Abbreviations	16		5.	The Interaction Between DNA Viruses	
		References	16			and the Eukaryotic DNA Damage	40
					,	Response	40
					6.	Diversity-Generating Retro-Elements	4.1
Sec	tio	n I				in Bacteriophages	41
		ne Instability of Viruses			7.	Recombination-Driven Genome	11
Gei	IOI	he instability of viruses			0	Instability in DNA Viruses	41
2	<u> </u>				ö.	APOBEC3 Proteins and DNA Virus	40
2.	Ge	netic Instability of RNA Viruses			0	Genome Instability Conclusions and Future Directions	42
	J.N.	Barr and R. Fearns				Glossary	43 44
			24			List of Acronyms and Abbreviations	44
		Introduction	21			References	44
	2.	Overview of RNA Virus Multiplication	21			NCICI ETICES	7*

Ge	nor	on me Instability in Bacteria rchaea		5. Genome Instability Due to Specialized Genetic Elements 77 5.1 Insertion Sequences 77 5.2 Transposons (Nonconjugative) 78
4.	Ar	enome Instability in Bacteria and chaea: Strategies for Maintaining enome Stability		5.3 Miniature Inverted-Repeat Transposable Elements 78 6. Genome Instability Due to Genetic Exchange 78
	JE	. Messling and A.B. Williams		6.1 Transduction 79 6.2 Conjugation 79
	1.	Introduction	51	6.3 Transformation 80
	2.	Reponses to DNA Damage	55	7. Conclusion 80
		2.1 The SOS Response: A Primitive		Glossary 80
		Cell-Cycle Checkpoint	55	List of Abbreviations 8
		2.2 An Archaeal UV Response Based		References 8
		on DNA Sharing	56	
	3.	DNA Repair Pathways	57	6. CRISPR: Bacteria Immune System
		3.1 Direct Reversal of DNA Damage	57	A. Golubov
		3.2 Base Excision Repair and Removal		
		of Uracil from DNA	58	1. Introduction 87
		3.3 Nucleotide Excision Repair:		2. History of the CRISPR/Cas Discovery 87
		A Versatile DNA-Repair Pathway	59	3. Structure of the CRISPR Loci 88
		3.4 Correcting Mismatched Bases:		4. CRISPR/Cas Classification 89
		Cleanup After DNA Replication	60	5. Composition of the CRISPR/Cas Systems 90
		3.5 Recombination Repair: Dealing With	<i>c</i> 1	6. Molecular Machines of CRISPR/Cas Systems 9
		Double-Strand Breaks	61	7. CRISPR/Cas Systems at Work 92
	4.	Restriction-Modification Systems:		7.1 The CRISPR Adaptation 92
	_	Protecting the Genome From Invaders	62	7.2 The Expression Stage 94
	5.	Conclusion	64	7.3 The CRISPR Interference 94
		Glossary List of Abbreviations	64	8. Other Roles of the CRISPR/Cas Systems 94
			64	9. Conclusion 95
		References	65	Glossary 95
_	C	nomo Instability in Pastoria, Caya	3.6	List of Acronyms and Abbreviations 96 References 96
5.		enome Instability in Bacteria: Cause d Consequences	28	References
	A.B	3. Williams		
	1.	Introduction	69	Section III
	2.	Effects of Stress Responses on Genome		Genome Stability of Unicellular
		Instability	69	Eukaryotes
		2.1 The SOS Response	70	Lukaiyotes
		2.2 The RpoS-Mediated General Stress		7 Every Micropusions to Macropusions
		Response	71	7. From Micronucleus to Macronucleus:
		2.3 The Stringent Response	72	Programmed DNA Rearrangement
		2.4 Heat and Cold Shock Responses	72	Processes in Ciliates Are Regulated
		2.5 Polyphosphate-Mediated Starvation		Epigenetically by Small and Long
		Response	72	Noncoding RNA Molecules
	3.	Genome Instability Due to Stable Mutator		F. Jönsson
		Genotypes	73	
	4.	Genome Instability Due to Homologous		1. Introduction 101
		and Illegitimate Recombination	74	2. The Sexual Life Circle of Ciliates 102
		4.1 Microsatellite Instability	74	3. Organization of the Micro- and
		4.2 Gene Conversion	74	Macronuclear Genomes 103
		4.3 Site-Specific Inversion Systems	75 76	4. Epigenetic Regulation of Macronuclear
		4.4 Error-Prone Double-Strand Break Repair	76	Development in Tetrahymena 106

	5.		genetic Regulation of Macronuclear				1.2	Drosophila as a Model Organism:	
			elopment in Stichotrichous Ciliates	108				The Basics	140
	6.	Cor	nclusion	112		2.	Mit	otic Recombination	140
		Glo	ssary	112			2.1	Mitotic Recombination: A Historical	
			of Abbreviations	112				Perspective	141
			erences	112			2.2		
		1101	erences	112			4.4	Recombination	141
o	u.	`	largus Pasambination and				2.2		
0.			logous Recombination and				2.3	Initial Response and Pathway Choice	141
			omologous End-Joining Repai	r			2.4	Synthesis-Dependent Strand	
	in	Yea	st					Annealing: A Model Consummated	
	0.5							in Flies	143
	K.E	. jone	es and T.C. Humphrey				2.5	End Joining in <i>Drosophila</i>	145
	1.	Intr	oduction	117				Mitotic COs and the dHJ Model	145
		1.1	A Brief History	118		3.	Mei	otic Recombination	146
	2.		nologous Recombination Models	118			3.1	Meiotic Recombination: A Historical	
		2.1	Holliday Model	118				Perspective	146
		2.2	Double-Strand Break Repair Model	118			3.2	Mechanisms of Meiotic	
		2.3	Synthesis-Dependent Strand	110				Recombination	147
		2.5	Annealing Model	120			3.3	Initiation of Recombination	147
		2.4		120				Preference of Homolog as Repair	
			Break-Induced Replication Model					Template	147
	2		Single-Strand Annealing Model	120			3 5	Promoting CO Formation: Pro-CO	,
	3.		nmon Homologous Recombination	404			3.3	Complexes	148
		Step		121			3.6	Promoting CO Formation: Meiotic	170
			End Resection	121			3.0	Resolvases	148
		3.2	Nucleofilament Formation	124			2 7		
		3.3	Homology Search and Strand Invasion	124			3./	Meiotic Recombination in <i>Drosophila</i>	
		3.4	DNA Repair Synthesis	124			_	Double-End Engagement Model	149
		3.5	Strand Annealing	125		4.		sophila: The Next 100 Years	150
		3.6	Resolution and Dissolution of					ssary	150
			Recombination Intermediates	125				of Acronyms and Abbreviations	151
	4.	Non	homologous End-Joining	126			Refe	erences	152
			Core Nonhomologous End-Joining						
			Machinery	126	10.	Ge	enon	ne Stability in <i>Drosophila</i> :	
		4.2	Alternative End-Joining	128		Mi	isma	tch Repair and Genome Stabil	ity
	5.		Cycle Regulation of Homologous	. – -				•	′
	٥.		ombination and Nonhomologous			1.7	Vegisl	ni	
			-Joining	129		1.	Intro	oduction	155
	6		clusion	129		2.		R Activity in <i>Drosophila</i>	155
	υ.							R Genes in <i>Drosophila</i>	156
			ssary	129				R and Microsatellite Instability	156
			of Acronyms and Abbreviations	130		4.		Role of MMR in Meiotic Recombination	
		Rete	erences	131		5.			
						6.		R and Somatic Cell Mutation	157
						7.		clusion	159
Sec	ctio	n I	\checkmark				Glos	•	160
								of Abbreviations	160
			tability in Multicellular				Refe	rences	160
Euk	ary	ote	S						
	,				11.	Ge	enom	ne Stability in Caenorhabditis	
9.	Μe	eioti	c and Mitotic Recombination:				egans	•	
			Flies				_		
						М.	Riecki	her, A.F.C. Lopes and B. Schumacher	
	J.K.	Hols	claw, T. Hatkevich and J. Sekelsky			1.	Intro	duction	163
	1	Inés:	duction	139		2.		Caenorhabditis elegans Model	164
	1.		oduction	133				-	104
		1.1	Recombination in <i>Drosophila</i> : The	120		3.		erful Genetic Tools to Explore	164
			First 100 Years	139			אטט	Dynamics	164

	4.5.6.	Genotoxic Agents for DNA Damage Induction Methods for DNA Damage Detection Excision Repair	166 166 167		5.	Future Perspectives of the Genome- Editing Technology Glossary List of Acronyms and Abbreviations References	196 196 197 197
	7.	6.1 Nucleotide Excision Repair6.2 Base Excision RepairMismatch Repair	167 169 170	13.	Pla	nt Genome Stability: General	137
	8.	Double-Strand Break Repair in <i>C. elegans</i>8.1 Homologous Recombination8.2 Nonhomologous End Joining	170 170 174		Me	echanisms Bilichak	
		8.3 Other Conserved DSB-Repair			1.	Introduction	203
		Mechanisms	174		2.	DNA-Damaging Agents	203
	9.	DNA-Damage Checkpoints	175		3.	Sensing DNA Damage	204
		9.1 Sensors of the DNA Damage			4.	Chromatin Architecture and DNA	
		Response	175			Repair	205
		9.2 Checkpoint Sensor Proteins in			5.	Photoreactivation	206
		Telomere Length Maintenance	175		6.	Base Excision Repair	208
		9.3 Effectors of DNA-Damage			7.	Nucleotide Excision Repair	209
		Checkpoints	176		8.	Mismatch Repair	211
		9.4 Cytokinesis Checkpoint	176		9.	DNA Double-Strand Break Repair	212
	10.	Concluding Remarks	177			9.1 Homologous Recombination	214
		Glossary	177			9.2 Nonhomologous End-Joining	217
		List of Abbreviations	179			DNA Repair in Organelles	218
		Acknowledgments	180		11.	Future Perspective	218
		References	180			Glossary	218
12	Ca	netic Engineering of Plants Using				List of Acronyms and Abbreviations References	218219
14.		Fingers, TALENS, and CRISPRS					
14.	Zn						
12.	Zn A. B	Fingers, TALENs, and CRISPRs Ellichak and F. Eudes	187	Sec	ctio	n V	
12.	Z n <i>A. B</i> 1.	Fingers, TALENs, and CRISPRs illichak and F. Eudes Introduction	187				
12.	Z n <i>A. B</i> 1.	Fingers, TALENs, and CRISPRs illichak and F. Eudes Introduction Zinc Finger Nucleases for Genome				n V ne Stability in Mammals	
12.	Z n <i>A. B</i> 1.	Fingers, TALENs, and CRISPRs Ellichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application	187 188 189	Ger	non Ce	ne Stability in Mammals II-Cycle Control and DNA-Damag	ge
12.	Z n <i>A. B</i> 1.	Fingers, TALENs, and CRISPRs Ellichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants	188	Ger	non Ce Sig	ne Stability in Mammals II-Cycle Control and DNA-Damag naling in Mammals	ge
12.	Z n <i>A. B</i> 1.	Fingers, TALENs, and CRISPRs illichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species	188	Ger	non Ce Sig	ne Stability in Mammals II-Cycle Control and DNA-Damag	ge
12.	Z n <i>A. B</i> 1.	Fingers, TALENs, and CRISPRs illichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc	188 189	Ger	Ce Sig	ne Stability in Mammals II-Cycle Control and DNA-Damag naling in Mammals	ge 227
12.	Zn A. B 1. 2.	Fingers, TALENs, and CRISPRs illichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc Finger Nucleases Technology	188 189	Ger	Ce Sig	ne Stability in Mammals II-Cycle Control and DNA-Damag naling in Mammals Gomez and A. Hergovich Introduction Cell-Cycle Progression in Mammalian Cells	
12.	Zn A. B 1. 2.	Fingers, TALENs, and CRISPRs Ellichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc Finger Nucleases Technology TALENs for the Genome Engineering of Plants	188 189 190	Ger	Ce Sig V. C	ne Stability in Mammals II-Cycle Control and DNA-Damag naling in Mammals Gomez and A. Hergovich Introduction	227
12.	Zn A. B 1. 2.	Fingers, TALENs, and CRISPRs Ellichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc Finger Nucleases Technology TALENs for the Genome Engineering of Plants 3.1 The Application of TALENs in the	188 189 190 191 191	Ger	Ce Sig V. C 1. 2.	ne Stability in Mammals II-Cycle Control and DNA-Damag naling in Mammals Gomez and A. Hergovich Introduction Cell-Cycle Progression in Mammalian Cells 2.1 Definition of Cell-Cycle Phases 2.2 Molecular Regulation of Cell-Cycle Progression	227 228
12.	Zn A. B 1. 2.	Fingers, TALENs, and CRISPRs illichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc Finger Nucleases Technology TALENs for the Genome Engineering of Plants 3.1 The Application of TALENs in the Model Plant Species	188 189 190 191 191	Ger	Ce Sig V. C 1. 2.	II-Cycle Control and DNA-Damag naling in Mammals Comez and A. Hergovich Introduction Cell-Cycle Progression in Mammalian Cells 2.1 Definition of Cell-Cycle Phases 2.2 Molecular Regulation of Cell-Cycle Progression DNA-Damage Signaling and Repair in	227 228 228 228
12.	Zn A. B 1. 2.	Fingers, TALENs, and CRISPRs illichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc Finger Nucleases Technology TALENs for the Genome Engineering of Plants 3.1 The Application of TALENs in the Model Plant Species 3.2 The Application of TALENs in Crops	188 189 190 191 191	Ger	Ce Sig V. C 1. 2.	II-Cycle Control and DNA-Damag naling in Mammals Somez and A. Hergovich Introduction Cell-Cycle Progression in Mammalian Cells 2.1 Definition of Cell-Cycle Phases 2.2 Molecular Regulation of Cell-Cycle Progression DNA-Damage Signaling and Repair in Mammals	227 228 228 228 230
12.	Zn A. B 1. 2.	Fingers, TALENs, and CRISPRs illichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc Finger Nucleases Technology TALENs for the Genome Engineering of Plants 3.1 The Application of TALENs in the Model Plant Species 3.2 The Application of TALENs in Crops 3.3 Potential Limitations of the TALEN	188 189 190 191 191 191 192	Ger	Ce Sig V. C 1. 2.	II-Cycle Control and DNA-Damage naling in Mammals Gomez and A. Hergovich Introduction Cell-Cycle Progression in Mammalian Cells 2.1 Definition of Cell-Cycle Phases 2.2 Molecular Regulation of Cell-Cycle Progression DNA-Damage Signaling and Repair in Mammals 3.1 DDR Signaling	227 228 228 228 230 230
12.	Zn A. B 1. 2.	Fingers, TALENs, and CRISPRs illichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc Finger Nucleases Technology TALENs for the Genome Engineering of Plants 3.1 The Application of TALENs in the Model Plant Species 3.2 The Application of TALENs in Crops 3.3 Potential Limitations of the TALEN Technology	188 189 190 191 191 191 193	Ger	Ce Sig V. C 1. 2.	Il-Cycle Control and DNA-Damag naling in Mammals Gomez and A. Hergovich Introduction Cell-Cycle Progression in Mammalian Cells 2.1 Definition of Cell-Cycle Phases 2.2 Molecular Regulation of Cell-Cycle Progression DNA-Damage Signaling and Repair in Mammals 3.1 DDR Signaling 3.2 DNA-Damage Repair	227 228 228 228 230
12.	Zn A. B 1. 2.	Fingers, TALENs, and CRISPRs Ellichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc Finger Nucleases Technology TALENs for the Genome Engineering of Plants 3.1 The Application of TALENs in the Model Plant Species 3.2 The Application of TALENs in Crops 3.3 Potential Limitations of the TALEN Technology The CRISPR/Cas9 System for the Genome	188 189 190 191 191 191 192 193 e	Ger	Ce Sig V. C 1. 2.	Il-Cycle Control and DNA-Damag naling in Mammals Gomez and A. Hergovich Introduction Cell-Cycle Progression in Mammalian Cells 2.1 Definition of Cell-Cycle Phases 2.2 Molecular Regulation of Cell-Cycle Progression DNA-Damage Signaling and Repair in Mammals 3.1 DDR Signaling 3.2 DNA-Damage Repair Checkpoint Control: DNA-Damage	227 228 228 228 230 230 232
12.	Zn A. B 1. 2.	Fingers, TALENs, and CRISPRs Ellichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc Finger Nucleases Technology TALENs for the Genome Engineering of Plants 3.1 The Application of TALENs in the Model Plant Species 3.2 The Application of TALENs in Crops 3.3 Potential Limitations of the TALEN Technology The CRISPR/Cas9 System for the Genome Engineering of Plants	188 189 190 191 191 191 193	Ger	Ce Sig V. C 1. 2.	II-Cycle Control and DNA-Damag naling in Mammals Gomez and A. Hergovich Introduction Cell-Cycle Progression in Mammalian Cells 2.1 Definition of Cell-Cycle Phases 2.2 Molecular Regulation of Cell-Cycle Progression DNA-Damage Signaling and Repair in Mammals 3.1 DDR Signaling 3.2 DNA-Damage Repair Checkpoint Control: DNA-Damage Signaling and the Mammalian Cell Cycle	227 228 228 228 230 230 232 234
12.	Zn A. B 1. 2.	Fingers, TALENs, and CRISPRs illichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc Finger Nucleases Technology TALENs for the Genome Engineering of Plants 3.1 The Application of TALENs in the Model Plant Species 3.2 The Application of TALENs in Crops 3.3 Potential Limitations of the TALEN Technology The CRISPR/Cas9 System for the Genome Engineering of Plants 4.1 The Application of the CRISPR/Cas	188 189 190 191 191 191 193 e 193	Ger	Ce Sig V. C 1. 2.	II-Cycle Control and DNA-Damag naling in Mammals Gomez and A. Hergovich Introduction Cell-Cycle Progression in Mammalian Cells 2.1 Definition of Cell-Cycle Phases 2.2 Molecular Regulation of Cell-Cycle Progression DNA-Damage Signaling and Repair in Mammals 3.1 DDR Signaling 3.2 DNA-Damage Repair Checkpoint Control: DNA-Damage Signaling and the Mammalian Cell Cycle 4.1 The G1/S Cell-Cycle Checkpoint	227 228 228 228 230 230 232
12.	Zn A. B 1. 2.	Fingers, TALENs, and CRISPRs illichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc Finger Nucleases Technology TALENs for the Genome Engineering of Plants 3.1 The Application of TALENs in the Model Plant Species 3.2 The Application of TALENs in Crops 3.3 Potential Limitations of the TALEN Technology The CRISPR/Cas9 System for the Genome Engineering of Plants 4.1 The Application of the CRISPR/Cas System in Model Plant Species	188 189 190 191 191 191 192 193 e	Ger	Ce Sig V. C 1. 2.	II-Cycle Control and DNA-Damag naling in Mammals Gomez and A. Hergovich Introduction Cell-Cycle Progression in Mammalian Cells 2.1 Definition of Cell-Cycle Phases 2.2 Molecular Regulation of Cell-Cycle Progression DNA-Damage Signaling and Repair in Mammals 3.1 DDR Signaling 3.2 DNA-Damage Repair Checkpoint Control: DNA-Damage Signaling and the Mammalian Cell Cycle 4.1 The G1/S Cell-Cycle Checkpoint 4.2 The Intra-S-Phase Cell-Cycle	227 228 228 230 230 232 234 235
12.	Zn A. B 1. 2.	Fingers, TALENs, and CRISPRs illichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc Finger Nucleases Technology TALENs for the Genome Engineering of Plants 3.1 The Application of TALENs in the Model Plant Species 3.2 The Application of TALENs in Crops 3.3 Potential Limitations of the TALEN Technology The CRISPR/Cas9 System for the Genome Engineering of Plants 4.1 The Application of the CRISPR/Cas System in Model Plant Species 4.2 The Application of the CRISPR/Cas	188 189 190 191 191 191 193 193 194	Ger	Ce Sig V. C 1. 2.	II-Cycle Control and DNA-Damag naling in Mammals Gomez and A. Hergovich Introduction Cell-Cycle Progression in Mammalian Cells 2.1 Definition of Cell-Cycle Phases 2.2 Molecular Regulation of Cell-Cycle Progression DNA-Damage Signaling and Repair in Mammals 3.1 DDR Signaling 3.2 DNA-Damage Repair Checkpoint Control: DNA-Damage Signaling and the Mammalian Cell Cycle 4.1 The G1/S Cell-Cycle Checkpoint 4.2 The Intra-S-Phase Cell-Cycle Checkpoint	227 228 228 230 230 232 234 235
12.	Zn A. B 1. 2.	Fingers, TALENs, and CRISPRs illichak and F. Eudes Introduction Zinc Finger Nucleases for Genome Engineering of Plants 2.1 Zinc Finger Nucleases Application in Model Plant Species 2.2 Zinc Finger Nucleases Application in Crops 2.3 Potential Limitations of the Zinc Finger Nucleases Technology TALENs for the Genome Engineering of Plants 3.1 The Application of TALENs in the Model Plant Species 3.2 The Application of TALENs in Crops 3.3 Potential Limitations of the TALEN Technology The CRISPR/Cas9 System for the Genome Engineering of Plants 4.1 The Application of the CRISPR/Cas System in Model Plant Species	188 189 190 191 191 191 193 e 193	Ger	Ce Sig V. C 1. 2.	II-Cycle Control and DNA-Damag naling in Mammals Gomez and A. Hergovich Introduction Cell-Cycle Progression in Mammalian Cells 2.1 Definition of Cell-Cycle Phases 2.2 Molecular Regulation of Cell-Cycle Progression DNA-Damage Signaling and Repair in Mammals 3.1 DDR Signaling 3.2 DNA-Damage Repair Checkpoint Control: DNA-Damage Signaling and the Mammalian Cell Cycle 4.1 The G1/S Cell-Cycle Checkpoint 4.2 The Intra-S-Phase Cell-Cycle	227 228 228 230 230 232 234 235

	5.	Conclusion Glossary List of Acronyms and Abbreviations Acknowledgments References	237 237 238 238 238		8. 9.	ı	266 266 266 267 267 267
15.		ne Role of p53/p21/p16 in DNA-				References	268
	Da	amage Signaling and DNA Repair		17	D.	sa Excision Panair and Nucleatide	
	<i>Y</i> . <i>I</i>	Kulaberoglu, R. Gundogdu and A. Hergovid	ch	17.		se Excision Repair and Nucleotide cision Repair	
	1. 2.	Introduction The p53 Tumor-Suppressor Protein	243 244		Т. І	zumi and I. Mellon	
		2.1 p53 in the DNA-Damage Response	244		1.	General Overview and Historical	
		2.2 p53 in DNA-Damage Repair	246			Perspectives of Two DNA Excision-	
		2.3 p53 in Tumor Suppression and				Repair Pathways, BER and NER	275
		the DNA-Damage Response	246		2.		276
		2.4 p53 and Targeted DNA-Damaging				,	276
	_	Cancer Therapy	247			2.2 Types of DNA Damage Repaired	
	3.	The p21 Tumor-Suppressor Protein	248			,	276
		3.1 p21 in the DNA-Damage Response	248				277
		3.2 p21 in DNA-Damage Repair3.3 p21 and Tumor Suppression	249 249		2		283 283
	4.	The p16 ^{INK4A} Tumor-Suppressor Protein	2 4 9 250		э.		2 03 283
	5.	Conclusion	251			3.2 Types of DNA Damage Repaired	203
	٠.	Glossary	252			, , .	286
		List of Acronyms and Abbreviations	252			•	286
		Acknowledgments	252			3.4 Transcription-Coupled NER	289
		References	253			•	290
						3.6 Alterations in NER and Cancer	
16.	Ro	les of RAD18 in DNA Replication				1	290
	an	d Postreplication Repair			4.	Biological Implications Beyond DNA	
	C 1	Vaziri, S. Tateishi, E. Mutter-Rottmayer				•	291
		Yaziri, S. Pateisini, E. Watter-Rottinayer				4.1 Diversity of Immune Cells by Activation-Induced Deaminase	201
							291 291
	1.	Introduction: The DDR, DNA Damage-			5.	Interplay Between NER and BER: The Key	231
		Tolerance and DNA Damage-Avoidance	257		<i>J</i> .	Role of the DNA-Damage Response for	
	2.	Mechanisms Identification of RAD18-RAD6 as a	257				291
	۷.	Mediator of DNA Damage Tolerance	258			5.1 Overlapping Substrate Specificity	
	3.	RAD18-Mediated PCNA	200			Between BER and NER	291
		Monoubiquitination and the TLS				5.2 A Nuclear-Mitochondria Signaling	
		Polymerase Switch	259			Network as a Main Platform of	
	4.	RAD18 Structure, Activation, and				1 /	292
		Coordination With the DDR	259		6.	e	293
		4.1 RAD18 Structure	259			•	293
		4.2 RAD18 Activation	260				294
		4.3 Transcriptional and Posttranslational				· ·	295 295
	_	Regulation of RAD18	262			References	<u> </u>
	5.	DNA Replication-Independent RAD18	262	1Ω	DV	A Mismatch Papair in Mammals	
	6	Activation and TLS RAD18 Functions in Error-Free PRR via	262	10.	יוע	A Mismatch Repair in Mammals	
	6.	Template Switching	264		М. Ү	ang and P. Hsieh	
	7.	TLS- and TS-Independent Roles of	_~,		1.	Introduction and Brief History 3	303
	-	RAD18 in Genome Maintenance	265			· · · · · · · · · · · · · · · · · · ·	304
						•	

		24.0	204		4	Dala	o of LID in Donlination Foul	
		2.1 Overview	304		4.		es of HR in Replication Fork	341
		2.2 MutS Homologs	305				ctivation and DSB Repair	341
		2.3 MutL Homologs	308			4.1	Fork Stability/Restart by HR Upon	2/1
		2.4 Licensing Targeted Excision	310			4.0	Replication Stress	341
	_	2.5 Strand Discrimination	311			4.2	Competition for the DNA DSB-Repair	
	3.	Mismatch Repair and the DNA-Damage	242				Pathway Choice and Consequences for	
		Response	312		-	The	Meiosis and Genome Manipulation	343
		3.1 Alkylation Damage and Thiopurines	312		5.		Dark Side of HR: Promotion of	344
		3.2 Fluorouracil	313		,		ome Instability	344
		3.3 Oxidative Damage and Noncanonical			ъ.		ection Against Excessive HR Cell-Cycle Regulation	345
		MMR 2.4 LIV Cignistin and DNA Cross Links	313 313				Protection Against HR Intermediate	343
	4	3.4 UV, Cisplatin, and DNA Cross-Links Regulation of MMR	314			0.2.	Accumulation	346
	4. 5.	Future Directions	314			6.3	Repression of HR Initiation	346
	J.	Glossary	315		7		nologous Recombination, Genome	3.40
		List of Abbreviations	315		,.		ility, and Cancer	346
		Acknowledgments	316				Misregulation of HR in Tumors	346
		References	316				Anticancer Strategies	347
		References	310		8		n Genomic Molecular Evolution	347
19.	Re	pair of Double-Strand Breaks by			9.		cluding Remarks	347
		onhomologous End Joining: Its			•	Glos		348
		omponents and Their Function					of Abbreviations	348
		•					rences	348
	<i>P</i> . N	Moskwa						
	1.	Introduction	321	21.	Te	lome	ere Maintenance and Genome	9
	2.	Classical NHEJ	322		Sta	abilit	'y	
		2.1 Components of Classical NHEJ	323		14/	Horn	andez-Sanchez, M. Xu and D.J. Taylor	
		2.2 Programmed Double-Strand Breaks	326		vv.	пен	andez-Sanchez, W. Au and D.J. Taylor	
	3.	Alternative NHEJ	328				oduction	353
		3.1 Components of A-NHEJ	329		2.		mere Length and Telomerase	
		3.2 Role of A-NHEJ in Chromosomal				_	ulation	354
		Aberration	329				Germ Cells and Embryogenesis	356
		End Processing	330				Stem Cells	356
	5.	Conclusions	331		3.	_	anization and Function of TERT	
		Glossary	331			and		356
		List of Abbreviations	332				TERT Organization	356
		References	332				Telomerase RNA Component	357
20	D	subla Strand Broak Danaire					meric DNA Structure	357
20.		ouble-Strand Break Repair:			5.		mere-Interacting Proteins	358
		omologous Recombination in					The Shelterin Complex	358
	Mi	ammalian Cells			,		CST Protein Complex	360
	<i>C</i> .	Gelot, T. Le-Guen, S. Ragu and B.S. Lopez			6.		mere-Telomerase Interactions and	360
			227		7		ılation mere-Associated Diseases	360
	1.	Introduction	337		7.			300
	2.	The Role of HR in the Equilibrium of Genetic Stability Versus Diversity	220			7.1	Telomere Length Homeostasis and Related Diseases	360
	3.	, ,	338			7 2	Telomeres and Premature Aging	300
	٦.	Molecular Mechanisms and Regulation of HR	339			1.2	Syndromes	362
		3.1 DSB Sensing and Chromatin	333			73	Telomerase Activity in Cancer	362
		Remodeling	339				Shelterin Mutations and Telomere-	J 02
		3.2 Initiation of DNA Resection	339			. • •	Related Diseases	363
		3.3 Loading of RAD51 and Strand			8.	Telo	meres as a DNA Damage-Prevention	
		Exchange	339			Syst	-	363
		3.4 Resolution of the HJ and HR Outcomes			9.		clusions and Closing Remarks	364

		Glossary List of Acronyms	365 365	24.		ole of DNA Methylation in Genom ability	e
		Acknowledgments References	366 367		D.	Zhou and K.D. Robertson	
22.	Ada Ge	e Relationship Between Checkpo aptation and Mitotic Catastrophe nomic Changes in Cancer Cells Swift and R.M. Golsteyn			 1. 2. 	 Introduction to the Cellular Functions of DNA Methylation 1.1 DNA-Methylation Dynamics 1.2 Transcriptional Regulation by DNA Methylation 	409 409 411
		Cancer and Its Hallmarks	373		۷.	Multifaceted Regulation of Genome Stability by DNA Methylation	411
	2. 3. 4. 5. 6. 7.	The Cell Cycle Cell-Cycle Checkpoints Genotoxic Agents as Anticancer Drugs Cell Death Mitotic Catastrophe Dual Modes of Cell Death by the Same Genotoxic Agent The Relationship Between Entry Into	374 375 375 376 377 379		3.	 2.1 Chromosomal Rearrangement and Changes in Nucleic Acid Sequences 2.2 DNA-Damage Repair 2.3 DNA Methylation and Heterochromatin Stability Conclusions and Future Direction Glossary List of Acronyms and Abbreviations References 	411 413 417 419 420 420 421
		Mitosis With Damaged DNA and Genomic Instability 8.1 Chromothripsis	379 380	25.		oncoding RNAs in Genome Integri	ty
		A History of Checkpoint Adaptation Checkpoint Adaptation in Human Cells	380 383			ovalchuk	40.5
		The Consequences of Checkpoint Adaptation The Relationship Between Checkpoint Adaptation and Genomic Instability	384		1. 2.	Introduction Targeting Bacteriophage Genomes by CRISPR/Cas9	425 425
	12.		204		3.	DNA Elimination in Ciliates	426
		Glossary	384 385			Telomerase RNA and Telomere Length	426
		List of Abbreviations	385		5.	Role of Micro-RNAs in the Regulation of DNA Repair and Genome Stability	426
		Acknowledgments References	386 386			5.1 A Brief Overview of Micro-RNA Biogenesis	426
23.		romatin, Nuclear Organization, Genome Stability in Mammals				5.2 Indirect Impact of miRNAs on Genome Stability5.3 DNA-Repair Factors Can Affect miRNA	426 A
		oteva and N. Gilbert				Biogenesis in Response to Stress 5.4 Regulation of the Activity of DNA-	428
	1. 2.	Introduction Histones	391 392			Damage Sensors and Effectors by miRNAs	428
	۷.	2.1 Histone Variants2.2 Histone Modifications	392 392		6.	The Role of Piwi-Interacting RNA in the Maintenance of Genome Stability in the	420
	3.	Nucleosomes and the 30-nm Fiber	394			Germline	429
	4. 5.	Higher-Order Structures Chromatin Remodelers	395 395			,	430 432
	6.	Access, Repair, Restore	397			•	432
	7.	Nuclear Organization of Chromatin	398			6.4 piRNAs in Transgenerational	
	8.	Chromosome Territories	399			· · · · · · · · · · · · · · · · · · ·	434
	9.	Transcription and Replication in the	400		7.	The Role of Small Interfering RNAs in the	405
	10	Nucleus	400 403			Maintenance of Genome Stability	435
	10.	Conclusions Glossary	403			7.1 siRNAs in <i>Neurospora crassa</i>7.2 DNA Strand Break–Induced Small	435
		List of Abbreviations	404			RNAs or diRNAs Are Involved in DSB	
		References	404				436

	8.	Conclusion	439			3.4	Hereditary Cancers Associated With	
		Glossary	439				Defects in DNA Mismatch Repair	471
		List of Abbreviations	440			3.5	Hereditary Cancers Associated With	
		References	440				Defects of DNA Double-Strand Break	(
							Repair	472
					4.	Gen	omic Instability in Sporadic	
							cers	474
Sec	tic	on VI				4.1	CIN in Sporadic Cancers	474
		n Diseases Associated With					Hypothesis of the Mechanisms of CIN	475
						4.3	**:	
Ge	non	ne Instability					on CIN in Various Cancers	475
		·				4.4	Oncogenes Induce CIN	476
26.	Hu	ıman Diseases Associated With					Chromothripsis	477
	Ge	enome Instability					Microsatellite Instability in Sporadic	.,,
		,					Cancer	477
		C. Feltes, J. de Faria Poloni, K.N. Miyamoto			5.	Trio	gering Excessive Genomic Instability	17 7
	and	f D. Bonatto			٠.		argeting DNA-Repair Pathways as a	
	1.	Introduction	447				tegy for Cancer Therapy	478
	2.	Rare Genetic Diseases Associated	,		6		clusion	480
		With DNA Repair	447		υ.		ssary	480
		2.1 NER-Related Diseases: Xeroderma	• ,				of Abbreviations	480
		Pigmentosum, Trichothiodystrophy,					erences	483
		and Cockayne Syndrome	448			Kele	rences	403
		2.2 Fanconi Anemia	450	28.	Ch	rom	atin Modifications in DNA	
		2.3 RECQ-Related Diseases: Rothmund-	150	40.				
		Thomson Syndrome, Werner			Ke	pair	and Cancer	
		Syndrome, and Bloom Syndrome	450		М.	Renai	ud-Young, K. Riabowol and J. Cobb	
		2.4 Ataxia Telangiectasia	453				•	40=
		2.5 Hutchinson–Gilford Progeria	133		1.		oduction	487
		Syndrome	453		2.		rrelationship of DNA and Chromatin	487
		2.6 Rare Genetic Diseases: Summary	454		3.		one Modifications and Chromatin	400
	3.	Cancer and Genome Instability	454				nodelers	488
	4.	Epigenetic Regulation of Cell Cycle and	137			3.1	Histone Acetyltransferases and	400
	٠,٠	DNA Repair in Cancer	456			2.7	Deacetylases	488
		Glossary	459			3.2	Histone Lysine Methyltransferases	400
		List of Acronyms and Abbreviations	459			2.2	and Demethylases	490
		References	461			3.3	Histone Ubiquitination and	101
		References	401				Sumoylation	491
27.	Ca	ncer and Genomic Instability					Histone Phosphorylation	491
47.	Ca	incer and denomic metablinty				3.5	Nucleosome Exchangers and	101
	W.	Wei, Y. Cheng and B. Wang					Remodelers	491
	1	Introduction	463				Histone Variants	492
	1.		463		4.		omatin Modifiers in Genome Stability	492
	2.	DNA-Repair Pathways	464			4.1	•	492
		2.1 Base Excision–Repair Pathway2.2 Nucleotide Excision–Repair Pathway					0	493
		• • •	464		5.		ication Stress, Activation of the S-Phase	
		,	465				ckpoint and DNA-Damage Tolerance	498
	2	2.4 Repair of DNA Double-Strand Breaks				5.1	DNA-Damage Tolerance	498
	3.	Genomic Instability in Hereditary Cancer	468 469			5.2	PCNA Modification and	400
		3.1 Li–Fraumeni Syndrome and TP53	409				DNA-Damage Tolerance	499
		3.2 MYH-Associated Polyposis and Deficiency in Base Excision Repair	460				EF-Damage Tolerance	500
		Denciency in pase excision Repair	469			5.4	Translesion Synthesis-Damage	
							_ _	
		3.3 Xeroderma Pigmentosum and a					Tolerance	500
			470			5.5	_ _	500 500

	v.	Overview. The Relationship between			2.3 DNA Damage-induced Nucleolar	
		Chromatin and Repair Choice	502		Stress in Intact Brain	529
		Glossary	503		2.4 Mediators of the Nucleolar Stress	
		List of Abbreviations	503		Response	529
		References	503		2.5 Ribosomal Deficiency and	0_0
			303	•	Neurodegeneration as Consequences	
20	_	t in a field.				E20
29.		enomic Instability and Aging:		2 1	of Persistent Nucleolar Stress	530
	Ca	auses and Consequences			Neurodegeneration-Associated	
	_	C:-//			instability of rDNA	531
	C.	Sidler		3	3.1 Consequences of rDNA Instability	
	1.	Introduction	511		,	531
	2.	Age-Related Accumulation of DNA	J.,	3	3.2 Mechanisms of rDNA Instability	
		Damage and Genomic Instability	512		in Nonneuronal Systems	532
		2.1 Accumulation of Point Mutations,	312	3	3.3 Evidence of rDNA Instability	
			F13			533
		Insertions, and Deletions	512	3	3.4 Potential Mechanisms and	
		2.2 Accumulation of Large Chromosomal			Significance of Neurodegeneration-	
		Aberrations	512			534
	3.	Causes of Age-Dependent Accumulation		4 (535
		of Genomic Instability	512			
		3.1 Oxidative Stress	512		•	536
		3.2 Depurination, Depyrimidination,				536
		and Deamination	513		ĕ	536
		3.3 Replication Errors and Replication		F	References	536
		Stress	513			
		3.4 Deterioration of Genome-				
		Maintenance Mechanisms	515	Section	VII	
		3.5 Altered Nuclear Architecture	517			
					f Environment on Genome	
		3.6 Selection	518	Stability	•	
	4.	Genomic Regions With Various	5 40	,		
		Susceptibility to Genomic Instability	518	31 Diet	and Nutrition	
		4.1 Nuclear DNA	518	31. Diet	and racinon	
		4.2 Mitochondrial DNA	520	L.R. F	erguson	
	5.	Role of Genomic Instability in Aging?	520	1. lı	ntroduction	543
		5.1 Effect of Genomic Instability on the				
		Gene Expression Profile	521		,	544
		5.2 Physiological Consequences	521		, , , , , , , , , , , , , , , , , , , ,	544
	6.	Conclusion	521			544
		Glossary	522			544
		List of Abbreviations	522	2	.4 Mutagens Formed During Food	
		References	523		o	545
		nero. oneco		2	.5 Mutagens Formed During Storage	
					of Foods	545
30.		cleolar Contributions to DNA-		2	.6 Accumulation of Environmental	
	Da	mage Response and Genomic			Pollutants in Animal Flesh	546
	(In	Stability in the Nervous System		2	.7 Natural Pesticides in Food Plants 5	546
		•			Pietary Protection Against Genomic	
	М. І	Hetman				546
	1.	Introduction	527			546
		Nucleolus as a Sensor of Neuronal DNA	327			548
	۷.		528		•	
			320		he Significance of Genetic Polymorphisms	
		2.1 Effects of DNA Damage on the	F20			549
			528		,	549
		2.2 Nucleolar Stress-Mediated Responses	E0.0		_	549
		to Neuronal DNA Damage	528	R	eferences 5	550

32.	Effect on Genome and Epigenome Stability			3.	Transgenerational Effects and Transgenerational Genome Instability 2.2 Bystander Effects Machanisms of Transgenerational Effects	586 588
	O. Kovalchuk			Э.	Mechanisms of Transgenerational Effects Epigenetic Changes	: 589
	1. Introduction	,-,- -			3.1 DNA Methylation	589
	2. Epigenetic Regulators	555 556			3.2 Histone Modifications	590
	2.1 DNA Methylation	556			3.3 Small RNA-Mediated Events	590
	2.2 Histone Modifications	557		4.		
	2.3 RNA-Induced Effects	558			Other Mutagens	592
	3. Effects of Metals	558		5.	Conclusions and Outlook	593
	4. Tamoxifen Effects	559			Glossary	594
	5. Effects of 1,3-Butadiene	560			List of Abbreviations	594
	6. Influence of Polycyclic Aromatic				References	594
	Hydrocarbons	561	25	_	anamic Instability and the Coastwo	
	7. Conclusions	562	33.		enomic Instability and the Spectru	
	Glossary	563		O	f Response to Low Radiation Dose	š
	List of Abbreviations	563		С.	Mothersill and C. Seymour	
	References	563		1.	•	o 601
22				۲.	1.1 Background to the Controversy	601
<i>5</i> 5.	Environmental Sources of Ionizing				1.2 Epidemiology Is a Blunt Tool	601
	Radiation and Their Health				1.3 Targeted and Nontargeted Effects	602
	Consequences				1.4 Genomic Instability	603
	A.A. Goodarzi, A. Anikin and D.D. Pearson				1.5 Bystander Effects	603
		E.C.O.			1.6 Adaptive/Hormetic Effects	604
	1. Introduction	569			1.7 Generic Stress Responses	605
	2. The Molecular Effects of IR in Cells	560		2.	•	605
		569			2.1 Spectrum of Effects	605
	3. Radiation Dosage and Linear Energy Transfer	5 <i>7</i> 1			2.2 Spectrum of Responses	606
	4. Nuclear Military Attacks and Civilian	37 1			2.3 Individual Variation	606
	Nuclear Disasters	572			2.4 The Role of Genetic Background	607
	5. Aerospace Travel	573			2.5 The Role of Other Stressors	607
	6. Medical Radiation (Radiotherapy and	0.0			2.6 The Role of Lifestyle Factors	607
	Medical Imaging)	5 7 4			2.7 Species-Sensitivity Distribution	607
	7. Radon Gas	5 <i>7</i> 5		3.		607
	8. Conclusion	577			3.1 Bioindicators	608
	Glossary	577			3.2 Biomarkers	608
	List of Abbreviations	577			3.3 Biosensors	608
	References	5 78			3.4 Signals	608
					3.5 System-Level Responses	609
				4	3.6 Emergent Effects Conclusions	609 609
C	· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			4.	Glossary	609
	ction VIII				List of Acronyms and Abbreviations	610
Bys	tander and Transgenerational				Acknowledgments	610
Effe	ects – Epigenetic Perspective				References	610
34.	Sins of Fathers Through a Scientific Lens: Transgenerational Effects		36.		ransgenerational Genome Instabilit Plants	y
	M. Merrifield and O. Kovalchuk			<i>1. I</i>	Kovalchuk	
	1. Introduction	585		1.	Introduction	615
	2. Radiation-Induced Genome Instability	586		2.	Genome Stability May Depend Upon the Choice of the DSB DNA-Repair Pathway	616

	3.		genetic Regulation of Plant Genome				2.2 Imaging of DSB Repair Proteins at	
			pility	617			Chromatin Sites Marked by γH2AX	
		3.1	Chromatin Structure, a Response to				in Cultivated Mammalian Cells	641
			Stress and Genome Stability	617		3.	γH2AX in Biodosimetry and Clinical	
		3.2	The Role of DNA Methylation in the				Assays	643
			Maintenance of Plant Genome			4.		1
			Stability and Response to Stress	619			(Comet-FISH) in the Detection of	
		3.3	The Role of Histone Modifications				Different Types of DNA Damage	644
			in the Maintenance of Genome			5.	Methods for Studying DNA Repair	
			Stability	622			After UV	644
		3.4	ncRNAs Are Likely Involved in the			6.	Conclusions	646
			Regulation of Genome Stability and				Glossary	646
			DNA Repair	623			List of Abbreviations	646
	4.		nsgenerational Responses	623			Acknowledgments	647
		4.1	Types of Transgenerational Effects				References	647
		and Possible Mechanisms of Their Appearance				_		
					38.		onserved and Divergent Features	
		4.2	Transgenerational Changes in				DNA Repair: Future Perspectives	
			Response to Abiotic Stress	625		in	Genome Instability Research	
		4.3	Transgenerational Changes in Genome Stability, Methylation, and Stress			I. K	ovalchuk (ovalchuk	
			Tolerance in Response to Biotic			1.	An Overview and Comparison of DNA-	
			Stress	626			Repair Pathways in Different Organisms	651
	5.	Poss	sible Mechanisms Involved in the				1.1 Direct Reversal of DNA Damage	651
		Regi	ulation of Transgenerational				1.2 Base Excision Repair	653
		Inhe	ritance of Stress Memory	627			1.3 Nucleotide Excision Repair	653
		5.1	The Potential Role of DNA-Repair				1.4 Mismatch Repair	654
			Factors	628			1.5 Double-Strand Break Repair	654
		5.2	The Role of Epigenetic Regulators	628		2.	Recent Advances and Future Directions	
	6.	Con	cluding Remarks	629			in DNA Repair	656
		Glos	sary	629			2.1 The Remaining Questions in MMR	656
		List	of Abbreviations	630			2.2 The Remaining Questions in DSBs	
		Refe	rences	630			Repair	658
						3.	Future Directions in Research on DNA	
37.	Me	etho	ds for the Detection of DNA				Repair, Genome Stability, and Cancer	660
		mag				4.	Future Perspectives in DNA-Editing	
								662
			anov, L.V. Solovjeva, V.M. Mikhailov				Glossary	663
	and	М.Р.	Svetlova				List of Abbreviations	663
	1.	Intro	duction	635			References	664
			Detection of DSBs in Cultivated					
			nmalian Cells and Tissues	636			•	
			Phosphorylated Histone H2AX					
			as a Marker of DSBs	636	Index		•	667