
Contents

H

Foreword xix

Preface xxiii

Acknowledgments xxxi

About the Author xxxv

Part I: Software Security Fundamentals 1

1 Defining a Discipline 3

The Security Problem 4
The Trinity of Trouble: Why the Problem Is Growing 5
Basic Science 10

Security Problems in Software 14
Bugs and Flaws and Defects, Oh My! 14
The Range of Defects 18
The Problem with Application Security 20
Software Security and Operations 23

Solving the Problem: The Three Pillars of Software Security 25
Pillar I: Applied Risk Management 26
Pillar II: Software Security Touchpoints 27
Pillar III: Knowledge 35

The Rise of Security Engineering 37
Software Security Is Everyone’s Job 38

xni



XIV Contents

2 A Risk Management Framework 39

Putting Risk Management into Practice 40

How to Use This Chapter 41

The Five Stages of Activity 42

Stage 1: Understand the Business Context 43

Stage 2: Identify the Business and Technical Risks 43

Stage 3: Synthesize and Rank the Risks 44

Stage 4: Define the Risk Mitigation Strategy 45

Stage 5: Carry Out Fixes and Validate 45

Measuring and Reporting on Risk 46

The RMF Is a Multilevel Loop 46

Applying the RMF: KillerAppCo’s iWare 1.0 Server 48

Understanding the Business Context 49

Identifying the Business and Technical Risks 50

Synthesizing and Ranking the Risks 63

Defining the Risk Mitigation Strategy 69

Carrying Out Fixes and Validating 73

The Importance of Measurement 73

Measuring Return 74

Measurement and Metrics in the RMF 75

The Cigital Workbench 76

Risk Management Is a Framework for Software Security 79

Part II: Seven Touchpoints for Software Security 81

3 Introduction to Software Security Touchpoints 83

Flyover: Seven Terrific Touchpoints 86

1. Code Review (Tools) 86

2. Architectural Risk Analysis 86

3. Penetration Testing 87

4. Risk-Based Security Testing 87
5. Abuse Cases 88

6. Security Requirements 88

7. Security Operations 88

*. External Analysis 88

Why Only Seven? 89

Black and White: Two Threads Inextricably Intertwined 89
Moving Left 91

Touchpoints as Best Practices 94



Contents xv

Who Should Do Software Security? 96
Building a Software Security Group 97

Software Security Is a Multidisciplinary Effort 100
Touchpoints to Success 103

4 Code Review with a Tool 105

Catching Implementation Bugs Early (with a Tool) 106
Aim for Good, Not Perfect 108
Ancient History 109
Approaches to Static Analysis 110

The History of Rule Coverage 112
Modern Rules 114

Tools from Researchland 114
Commercial Tool Vendors 123

Commercial Source Code Analyzers 124
Key Characteristics of a Tool 125
Three Characteristics to Avoid 127
The Fortify Source Code Analysis Suite 127
The Fortify Knowledge Base 132
Using Fortify 134

Touchpoint Process: Code Review 135
Use a Tool to Find Security Bugs 137

5 Architectural Risk Analysis 139

Common Themes among Security Risk Analysis Approaches 140
Traditional Risk Analysis Terminology 144
Knowledge Requirement 147
The Necessity of a Forest-Level View 148
A Traditional Example of a Risk Calculation 152
Limitations of Traditional Approaches 153
Modern Risk Analysis 154

Security Requirements 155
A Basic Risk Analysis Approach 156

Touchpoint Process: Architectural Risk Analysis 161
Attack Resistance Analysis 163
Ambiguity Analysis 165
Weakness Analysis 167

Getting Started with Risk Analysis 169
Architectural Risk Analysis Is a Necessity 170



XVI
Contents

6
Software Penetration

Testing 171

Penetration Testing Today 173

Software Penetration Testing—a Better Approach 178
Make Use of Tools 179
Test More Than Once 182

Incorporating Findings Back into Development 183

Using Penetration Tests to Assess the Application

Landscape 184

Proper Penetration Testing Is Good 185

7 Risk-Based Security Testing 187

What’s So Different about Security? 191

Risk Management and Security Testing 192

How to Approach Security Testing 193
Who 193
How 194

Thinking about (Malicious) Input 201

Getting Over Input 203

Leapfrogging the Penetration Test 204

8 Abuse Cases 205

Security Is Not a Set of Features 209

What You Can’t Do 210

Creating Useful Abuse Cases 211
But No One Would Ever Do That! 212

Touchpoint Process: Abuse Case Development 213
Creating Anti-Requirements 213
Creating an Attack Model 216

An Abuse Case Example 217

Abuse Cases Are Useful 222

9 Software Security Meets Security Operations 223

Don’t Stand So Close to Me 224

Kumbaya (for Software Security) 225

Come Together (Right Now) 232

Future’s So Bright, I Gotta Wear Shades 235



Contents xvn

Part III: Software Security Grows Up 237

10 An Enterprise Software Security Program 239

The Business Climate 240
Building Blocks of Change 242
Building an Improvement Program 246
Establishing a Metrics Program 247

A Three-Step Enterprise Rollout 248
Continuous Improvement 250
What about COTS (and Existing Software Applications)? 251

An Enterprise Information Architecture 253
Adopting a Secure Development Lifecycle 256

11 Knowledge for Software Security 259

Experience, Expertise, and Security 261
Security Knowledge: A Unified View 262
Security Knowledge and the Touchpoints 268
The Department of Homeland Security Build

Security In Portal 269
Knowledge Management Is Ongoing 274
Software Security Now 275

12 A Taxonomy of Coding Errors 277

On Simplicity: Seven Plus or Minus Two 279
Input Validation and Representation 279
API Abuse 279
Security Features 280
Time and State 280
Error Handling 281
Code Quality 281
Encapsulation 281
Environment 282

The Phyla 282
More Phyla Needed 289

A Complete Example 290
Lists, Piles, and Collections 292

Nineteen Sins Meet Seven Kingdoms 296
Seven Kingdoms and the OWASP Ten 297

Go Forth (with the Taxonomy) and Prosper 297



xviit ____

13 Annotated Bibliography and References 299

Annotated Bibliography: An Emerging Literature 299

Required Reading: The Top Five 299

References Cited in Software Security: Building

Security In 300

Government and Standards Publications Cited 312

Other Important References 313

Software Security Puzzle Pieces 318

Basic Science: Open Research Areas 319

Contents

Appendices 321

A Fortify Source Code Analysis Suite Tutorial 323

1. Introducing the Audit Workbench 324

2. Auditing Source Code Manually 326

3. Ensuring a Working Build Environment 328

4. Running the Source Code Analysis Engine 329

5. Exploring the Basic SCA Engine Command Line

Arguments 332

6. Understanding Raw Analysis Results 333

7. Integrating with an Automated Build Process 335

8. Using the Audit Workbench 339

9. Auditing Open Source Applications 342

B ITS4 Rules 345

C An Exercise in Risk Analysis: Smurfware 385

SmurfWare SmurfScanner Risk Assessment Case Study 385

SmurfWare SmurfScanner Design for Security 390

D Glossary 393

Index 395


	Inhaltsverzeichnis
	[Seite 1]
	[Seite 2]
	[Seite 3]
	[Seite 4]
	[Seite 5]
	[Seite 6]


