Contents

Preface	vii
Introduction	ix
About the Authors	xv
A cknowledgments	xvii
References to Front Matter	xix

Chapter	1. The Golden Ratio, Fibonacci Numbers,	
	and the "Golden" Hyperbolic Fibonacci and Lucas Functions	1
1.1	The Idea of Harmony and the Golden Section	
	in the History of Science	1
1.2	Proclus' Hypothesis: A New View on Euclid's <i>Elements</i>	
	and the History of Mathematics	3
1.3	The Golden Ratio in Euclid's <i>Elements</i>	10
1.4	The Algebraic Identities for the Golden Ratio	16
1.5	Fibonacci Numbers	19
1.6	Lucas Numbers	25
1.7	Binet's Formulas	27
1.8	The Theory of Fibonacci Numbers in Modern	
	Mathematics	30
1.9	The "Golden" Hyperbolic Fibonacci and Lucas	
	Functions	33
1.10	Hyperbolic Geometry of Phyllotaxis	
	(Bodnar's Geometry)	45
Refere	ences	49

Chapter	2. The Mathematics of Harmony	
	and General Theory of Recursive	
	Hyperbolic Functions	51
2.1	The Mathematics of Harmony: The History,	
	Generalizations and Applications of Fibonacci	
	Numbers and Golden Ratio	51
2.2	Algorithmic Measurement Theory as a	
	Constructive Measurement Theory Based	
	on the Abstraction of Potential Infinity	56
2.3	Pascal's Triangle, Fibonacci p-Numbers,	
	and Golden <i>p</i> -Proportions	57
2.4	Fibonacci p-codes	59
2.5	Codes of the Golden Proportion	59
2.6	The Golden Number Theory	60
2.7	Lucas Sequences	61
2.8	The Fibonacci λ -numbers	63
2.9	The Metallic Proportions	67
2.10	Gazale's Formulas	70
2.11	Hyperbolic Fibonacci and Lucas λ -functions	75
2.12	The Partial Cases of the λ -Fibonacci	
	and λ -Lucas Hyperbolic Functions $\ldots \ldots \ldots \ldots$	77
2.13	The Most Important Formulas for the	
	λ -Fibonacci and λ -Lucas Hyperbolic Functions	79
2.14	A General Theory of the Recursive Hyperbolic	
	Functions	83
2.15	Conclusions for Chapter 2	85
Refer	ences	86
Chapter	3. Hyperbolic and Spherical Solutions	
p	of Hilbert's Fourth Problem: The Way	
	to the Recursive Non-Euclidean Geometries	89
3.1	Non-Euclidean Geometry	89
3.2	Hilbert's Problems and Hilbert's Philosophy	95
3.3	Klein's Icosahedral Idea	97
3.4	Hilbert's Fourth Problem	99
3.5	Hyperbolic Solution of Hilbert's Fourth Problem	102
3.6	Spherical Fibonacci Functions	122
3.7	Spherical Solution to Hilbert's Fourth Problem	132

3.8	Comparative Table for Hyperbolic and Spherical Solutions of Hilbert's Fourth Problem	132
3.9	Searching for New Recursive Hyperbolic and Spherical Worlds of Nature:	
	A New Challenge for the Theoretical	
	Natural Sciences	133
3.10	Hilbert's Fourth Problem as a Possible Candidate	200
	for the Millennium Problem in Geometry	143
Refer	ences	145
Chapter	4. Introduction to the "Golden"	
	Qualitative Theory of Dynamical	
	Systems Based on the Mathematics	
	of Harmony	149
4.1	Beauty and Aesthetics of Mathematics	149
4.2	Preliminaries	154
4.3	Metallic Irrational Foliations without	
	Singularities on the Two-dimensional Torus T^2	162
4.4	The Metallic Irrational Foliations with Four	
	Needle Type Singularities on the	
	Two-dimensional Sphere S^2	173
4.5	Anosov's Automorphisms (Hyperbolic	
	Automorphisms) on the Two-dimensional	
	Torus T^2 and the Metallic Proportions	179
4.6	Prospects for Further Development of the Qualitative	
	Theory of Dynamical Systems, Based	100
-	on the Mathematics of Harmony	190
Refer	ences	199
Chapter	—	
	Solution to the Fine-Structure Constant Problem as a Physical Millennium Problem	207
5.1	Physical Millennium Problems	207
5.2	Classical Special Theory of Relativity	209
5.3	Fibonacci Special Theory of Relativity	212
5.4	The Fine-Structure Constant α and Its Relationship	
	with the Evolution of the Universe	222

5.5	Quantitative Results of the Fibonacci Special Theory	
	of Relativity from the Onset of the Big Bang $T = 0$	
	to any Time T [Billion Years] $\ldots \ldots \ldots \ldots \ldots \ldots$	244
5.6	Advantages of the Fibonacci Special Theory	
	of Relativity in Comparison with the Classical	
	Special Theory of Relativity	245
5.7	The Ratio of the Proton Mass M to the Electron	
	Mass m Depending on the Universe Evolution	247
5.8	General Conclusions	249
Refe	rences	256
Append	lix: From the "Golden" Geometry	
Append	lix: From the "Golden" Geometry to the Multiverse	26 1
Append A.1	-	261 261
	to the Multiverse	
A.1	to the Multiverse	261 262
A.1 A.2	to the Multiverse Conception of Multiverse	261 262
A.1 A.2 A.3	to the Multiverse Conception of Multiverse The Conceptions and Theories used in this Study Mathematical Models of the Multiverse	261 262
A.1 A.2 A.3	to the Multiverse Conception of Multiverse	261 262 265
A.1 A.2 A.3 A.4	to the Multiverse Conception of Multiverse The Conceptions and Theories used in this Study Mathematical Models of the Multiverse Fundamental Physical Constants of the λ-Universes	261 262 265 268
A.1 A.2 A.3 A.4 A.5	to the MultiverseConception of Multiverse.The Conceptions and Theories used in this Study.Mathematical Models of the Multiverse.Fundamental Physical Constantsof the λ -Universes.The Mathematics of Harmony as an Essential Part	261 262 265 268
A.1 A.2 A.3 A.4 A.5	to the MultiverseConception of MultiverseThe Conceptions and Theories used in this StudyMathematical Models of the MultiverseFundamental Physical Constantsof the λ -UniversesThe Mathematics of Harmony as an Essential Partof Mathematical Physics	26 26 26 26 26 27