Contents

Preface to the German editionIPreface to the English editionXI											
2	The e	lectrodynamics of continuous media	5								
	2.1	Maxwell's equations	.5								
	2.2	Molecular vs. macroscopic fields	.8								
	2.3	A simple model for the electric current	20								
	2.4	Dispersion relations and the passivity condition	!3								
	2.5	Electric displacement density and magnetic field strength	27								
	2.6	Index of refraction and coefficient of absorption	33								
	2.7	The electromagnetic material quantities	\$5								
	2.8	The oscillator model for the electric susceptibility	<i>\$</i> 9								
	2.9	Material equations in moving media	10								
3	Linea	r waves in homogeneous media	15								
	3.1	Elastic waves in solids	15								
	3.2	Isotropic elastic media	18								
	3.3	Wave surfaces and ray surfaces	51								
4	Crys	al optics and the second se	55								
	4.1	The normal ellipsoid	55								
	4.2	Plane waves in crystals	58								
	4.3	Optically uniaxial crystals	52								
	4.4	Optically biaxial crystals	55								
	4.5	Reflection and refraction at interfaces	56								
	4.6	Fresnel's equations	59								
	4.7	The Fabry–Perot interferometer	12								
5	Elect	ro-, magneto- and elastooptical phenomena	13 75								
	5.1	Polarization effects up to first order – optical activity	10								
	5.2	Polarization effects of higher order	19								
		5.2.1 Dependence on distortions	50								

Contents	5
----------	---

۱

								00
		5.2.2	Dependence on shear flows		• •	•••	• •	80
		523	Influence of electric fields			• •	•••	80
		52.5	Dependence on magnetic fields					81
		J.2.4	Dependence on magnetic neres					
~	T	1.4	of nonlinear antics		1 -			83
6	Found	ations	of nonlinear optics					83
	6.1	Nonlin	ear polarization – combination nequencies			• •		85
	6.2	Nonlin	ear waves in a medium			•••	•••	80
	6.3	Survey	of phenomena in nonlinear optics	•••		•••	• •	01
	6.4	Parame	etric amplification and frequency doubling	•••	•••	• •	••	91
	6.5	Phase 1	matching	• • •		• •	••	93
	6.6	Self-fo	cussing, optical bistability, phase self-modulation .			• •	••	95
	67	Phase of	conjugation					98
	6.8	Fiber o	optics and optical solitons					101
	0.0	1 1001 0						
7	Short		symptotics		с. А. Д.			107
'	7 1	Introdu	istory remarka					107
	/.1	mirodi	icity remains of Marwall's equations		•••	•••	•••	109
	1.2	Short-v	wave expansion of Maxwell's equations	•••	•••	•••	• •	111
	7.3	The sc	alar wave equation	•••	•••	•••	•••	117
	7.4	Phase :	surfaces and rays	• • •		•••	• •	115
	7.5	Fermat	t's principle			• •	•••	115
	7.6	Analog	gy between mechanics and geometrical optics				• •	116
8	Geom	netrical	optics					121
	8.1	Ferma	t's principle and focal points					121
	8.2	Perfec	t optical instruments					122
	83	Maxw	ell's fish-eve					123
	9.J	Canon	ical transformations and aikonal functions	•••	•••	• •	•••	125
	0.4	Canon Imagenia		• • •	· · ·	• •	•••	120
	8.5	imagn	ig points close to the optic axis by wide spread ray t	oundle	s	• •	•••	120
	8.6	Linear	geometrical optics and symplectic transformations		• • •	•••	• •	131
	8.7	Gaussi	ian optics and image matrices	• • •		• •	•••	134
	8.8	Lens d	lefects and Seidel's theory of aberrations				• •	139
9	Geon	netric tl	heory of caustics		21			143
	9.1	Short-	wave asymptotics for linear partial differential equation	tions				143
	9.2	Soluti	on of the characteristic equation					146
	9.3	Solution	on of the transport equation					151
	9.4	Focal	points and caustics	••••	• • •	•••	•••	153
	95	Behav	ior of phases in the vicinity of courties	••••	•••	•••		155
	0.6	Coucti	ion of phases in the vicinity of caustics	••••	•••	•••		130
	9.0 0.7	Causti Summi	was Lagrangian submanifolds and waslov index	••••	•••	• •		158
	9.1	Supple	ementary remarks on geometrical short-wave asymp	ototics	•••	•••		161
10	n:ee	o ati an	4h a a					
10		action	tneory					167
	10.1	Surve	У		• •			167
	10.2	The p	rinciples of Huygens and Fresnel					167
	10.3	The n	nethod of stationary phases					171
					-	•		

	10.4	Kirchhoff's representation of the wave amplitude	175
	10.5	Kirchhoff's theory of diffraction	179
	10.6	Diffraction at an edge	184
	10.7	Examples of Fraunhofer diffraction	186
		10.7.1 Diffraction by a rectangle	187
		10.7.2 Diffraction by a circular aperture	188
		10.7.3 Arrangements of several identical structures	189
	10.8	Optical image processing in Fourier space	191
	10.9	Morse families	195
	10.10	Oscillatory functions and Fourier integral operators	198
11	Holog	raphy	203
	11.1	The principle of holography	203
	11.2	Modifications and applications	205
		11.2.1 Observing small object deformations	206
		11.2.2 Holographic optical instruments	206
		11.2.3 Pattern recognition	207
	11.3	Volume holograms	207
		-	
12	Coher	rence theory	211
	12.1	Coherent and incoherent light	211
	12.2	Real and analytical signals	213
	12.3	The light wave field as a stochastic process	217
	12.4	Gaussian stochastic processes	220
	12.5	The quasi-monochromatic approximation	222
	12.6	Coherence and correlation functions	224
	12.7	The propagation of the correlation function	227
	12.8	Amplitude and intensity interferometry	230
		12.8.1 Amplitude interferometry: Michelson interferometer	230
		12.8.2 Photon correlation spectroscopy	231
	12.9	Dynamical light scattering	232
	12.10	Granulation	236
	12.11	Image processing by filtering	237
	12.12	Polarization of partially coherent light	239
	_	N de	0 4 F
13	Quan	tum states of the electromagnetic field	245
	13.1	Quantization of the electromagnetic field and harmonic oscillators	245
	13.2	Coherent and squeezed states	251
	13.3	Operators, ordering procedures and star products	259
	13.4	The Q, P , and Wigner functions of a density operator $\ldots \ldots \ldots \ldots$	266
14	Deter	tion of radiation fields	273
1.4	14.1	Beam splitters and homodyne detection	273
	14.1	Correlation functions and quantum coherence	279
	14.2	Massurement of correlation functions	281
	14.5	Articlauching and sub Daissonian light	201
	14.4	Ann-bunching and sub-Poissonian light	205

15	Inter	action o	of rad	liatic	n and	m	atter	1			۶.		1.1			.e. j					289
15	15.1	The ele	ectric	: dipc	ole inte	eraci	tion														289
	15.2	Simple	e lase	r the	orv.																294
	15.3	Three-	level	syste	ems an	d at	omic	interf	eren	ce .								•			296
		15.3.1	Ele	ctron	ıagneti	ical	ly ind	luced	trans	pare	ncy							•		•	299
		15.3.2	Ref	ractiv	ve inde	ex e	nhanc	cemen	t.			• •		•			•	•		•	301
		15.3.3	Las	ing w	vithout	: inv	rsio	n.	•••					•			•	•		•	301
		15.3.4	Cor	relate	ed emi	ssic	on las	er	• •		•••		• •	•			·	•		•	301
	15.4	The Jag	ynes-	-Cun	nmings	s mo	odel .		•••	• • •	• •	• •	••	•	•••	• •	·	•	•••	·	302
	15.5	The mi	icron	naser	•••	•••	•••		•••	•••	•••	•••	•••	•	•••	••	•	•	• •	·	308
	15.6	Quantu	ım st	ate ei	nginee	ring	;		••	•••	• •	••	•••	•	•••	•••	·	•	••	•	310
	15.7	The Pa	ul tra	ър.		•••	· · ·		· · ·			•••	•••	•	•••	•••	·	• •	•	•	313
	15.8	Motion	1 of a	. two-	-level a	aton	a m a	quant	ized	light	t fiel	d.	•••	•	• •	• •	•	• •	• •	•	320
16	Ouan	fum on	tics s	and f	undan	nen	tal m	uantu	m th	eors	,										323
10	16.1	Ouantu	1m er	ntang	lement	t .	un q			icor y											323
	16.2	Bell's i	ineau	alitie	es	•••			•••				•••				•	•••		•	328
	16.3	Quantu	ım er	asers	and n	neas	urem	ent w	ithou	it int	eract	tion									332
	16.4	No clo	ning	and c	quantu	m te	elepo	rtatior	ı												337
	16.5	Quantu	um cr	ypto	graphy	·	•••														342
	16.6	Quantu	ım co	mpu	tation									•					•		343
C.I	المماده																				
Sei	ectea	reterend	ces								45										351
Ind	ex							1.1					19								255
													• 475 -								555
								s					* 1.; az								
													91 9			<i>z</i> .,					
													¥.,			- 47 - 5					
													- 42			2 12					
								19													
								$\{ (i,j) \}_{j \in \mathbb{N}}$					<u>ц</u> е.,								
													e di								
													÷*								