Contents

	Foreword xiii
	Preface xv
	Structure of the Book and Teacher's Guide xix
PART	Pictures and Concepts I
CHAPTER I	 The Time-Dependent Schrödinger Equation 3 1.1 Separation of Variables and Reconstitution of the Wavepacket 4 1.2 Expectation Values 5 1.3 A Worked Example: Particle in Half a Box 7 Further Reading and Historical Notes 10 References 11
CHAPTER 2	 The Free-Particle Wavepacket 13 2.1 General Solution 13 2.2 The Center of the Wavepacket 16 2.3 The Dispersion of the Wavepacket 18 Problems 20 Further Reading and Historical Notes 21 References 21
CHAPTER 3	 The Gaussian Wavepacket 23 3.1 The Gaussian Free Particle 23 3.2 General Properties of Gaussian Wavepackets 26 3.3 Gaussian in a Quadratic Potential 28 3.4 Reexamination of the Stationary Phase Method 31 Problems 33 References 34
CHAPTER 4	 Correspondence between Classical and Quantum Dynamics 35 4.1 Ehrenfest's Theorem 35 4.2 Bohmian Mechanics and the Classical Limit 38 4.3 Fractional Revivals 46 Problems 49 References 53

CHAPTER 5	 The Wigner Representation and the Density Operator 55 5.1 The Concept of Phase Space 56 5.2 The Wigner Representation of Wavepackets 58 5.3 The Density Operator 61 5.4 Wigner Representation of the Density Operator 68 Problems 74 References 76
CHAPTER 6	 Correlation Functions and Spectra 81 6.1 Spectra as Fourier Transforms of Wavepacket Correlation Functions 81 6.2 General Properties of Fourier Transforms 86 6.3 Eigenfunctions as Fourier Transforms of Wavepackets 97 Problems 103 References 108
CHAPTER 7	 One-Dimensional Barrier Scattering 109 7.1 Wavepacket Formulation of Reflection and Transmission Coefficients 110 7.2 Cross-Correlation Function Formulation of Barrier Scattering and the S-Matrix 116 7.3 Scattering Theory Using Eigenstates 122 7.4 Overlap Integrals of Scattering Eigenstates 128 7.5 Reconstituting the Wavepacket from the Scattering Eigenstates 132 7.6 Resonances and Time Delay 134 Problems 138 References 140
PART	Formal Theory and Methods of Approximation 141
CHAPTER 8	 Linear Algebra and Quantum Mechanics 143 8.1 Linear Vector Spaces 143 8.2 Operators: Mapping a Wavefunction to Another Wavefunction 147 8.3 Discrete Basis Sets: The Bridge between Operators-Wavefunctions
CHAPTER 9	 Approximate Solutions of the Time-Dependent Schrödinger Equation 185 9.1 The Schrödinger, Heisenberg and Interaction Pictures 186 9.2 Time-Dependent Perturbation Theory 190 9.3 The Magnus Expansion and Wei-Norman Factorization 193

9.4 Adiabatic Dynamics and the Geometrical Phase 199

	 9.5 Periodic Hamiltonians and Floquet Theory 208 9.6 Variational Principles and the Time-Dependent Self-Consistent Field Approximation 214 Problems 220 References 222
CHAPTER 10	Path Integration, the van Vleck Propagator and Semiclassical Mechanics 227 10.1 The Classical Action 228
	10.2 Path Integration 238
	10.3 The van Vleck Propagator 240
	10.4 The Propagator as a Unitary Transformation 246
	10.5 Gaussian Wavepackets and the van Vleck Propagator 257 References 268
CHAPTER	Numerical Methods for Solving the Time-Dependent Schrödinger Equation 273
	11.1 Spectral Projection and Collocation 275
	11.2 The Pseudospectral Basis 281
	11.3 Gaussian Quadrature 285
	11.4 Representation of the Hamiltonian in the Reduced Space 293
	11.5 The Discrete Variable Representation 297
	11.6 The Fourier Method 301
	11.7 Time Propagation 312
	Problems 326
	References 329

PART III Applications 333

- CHAPTER 12 Introduction to Molecular Dynamics 335
 - 12.1 The Born-Oppenheimer Approximation 335
 - 12.2 Adiabatic versus Diabatic Representations 338
 - 12.3 Potential Energy Surfaces 345
 - 12.4 Normal Modes of Vibration 352
 - 12.5 Chemical Reactions and Transition State Theory 356
 - 12.6 Symmetry and Permutations 370
 - 12.7 Hyperspherical Coordinates 382
 History and Further Reading 387
 Problems 388
 References 390
- CHAPTER 13 Femtosecond Pulse Pair Excitation 395
 - 13.1 First-Order Processes: Wavepacket Interferometry 395
 - 13.2 Second-Order Processes: Clocking Chemical Reactions 403

Contents

¥

- 13.3 Coherent Nonlinear Spectroscopy 408
- 13.4 Density Operator Formulation of Optical Perturbations 419 References 424

CHAPTER 14 One- and Two-Photon Electronic Spectroscopy 427

- 14.1 Electronic Absorption and Emission Spectroscopy 433
- 14.2 Transition State Spectroscopy 445
- 14.3 Resonance Raman Spectroscopy 449
- 14.4 Dispersed Fluorescence Spectroscopy 465Problems 473References 475
- CHAPTER 15 Strong Field Excitation 479
 - 15.1 Two-Level System 479
 - 15.2 The Feynman–Vernon–Hellwarth (FVH) Representation 482
 - 15.3 Dressed States 486
 - 15.4 Adiabatic Excitation with Strong Fields 490
 - 15.5 Impulsive Excitation 499
 - 15.6 Optical Paralysis 501
 - Problems 504 References 505
- CHAPTER 16 Design of Femtosecond Pulse Sequences to Control Chemical Reactions 509
 - 16.1 Intuitive Control Concepts 511
 - 16.2 Variational Formulation of Control of Product Formation 516
 - 16.3 Applications of the Variational Formulation 528
 - 16.4 Multiple Pathway Interference 534
 - 16.5 Chirped Pulse Excitation 539
 - 16.6 Learning Algorithms 544 Problems 547 References 553

CHAPTER 17 Wavepacket Approach to Photodissociation 559

- 17.1 Introduction 559
- 17.2 The Eigenstates of an Asymptotic Hamiltonian 560
- 17.3 The Eigenstates of a Scattering Hamiltonian 561
- 17.4 Møller Operators 566
- 17.5 Wavepacket Formulation of Photodissociation 569
- 17.6 Applications 571 References 577
- CHAPTER 18 Wavepacket Correlation Function Formulation of Reactive Scattering 579
 - 18.1 The Concept of an Arrangement Channel and the Problem of Coordinate Systems 580

- 18.2 The Eigenstates of a Scattering Hamiltonian with Multiple Arrangement Channels 581
- 18.3 Wavepacket Cross-Correlation Function Formulation of $S_{\beta\alpha}(E)$ 586
- 18.4 Application to Collinear $H + H_2 \rightarrow H_2 + H_591$
- 18.5 Cumulative Reaction Probability 594 References 600

APPENDIX A The Dirac Delta Function and the Cauchy Principal Value 603

- A.1 The Dirac Delta Function 603
- A.2 The Cauchy Principal Value 605 References 608
- APPENDIX B Composite Systems 609
 - B.1 Wavefunction of a Composite System: Separability and Entanglement 609
 - B.2 Density Matrix of a Composite System 610
 - B.3 Reduced Density Matrix 611
 - B.4 Purity of the Reduced Density Matrix 613 References 615

APPENDIX C Normalization and Orthogonality of Scattering Eigenstates 617

- C.1 Single Step 617
- C.2 Concatenation of Steps 620 Problems 620 References 621

APPENDIX D Units and Conversions 623

- D.1 Energy Conversions and Time Scales 623
- D.2 Units of Electric Field Amplitude and Intensity 624

Index 625