Contents

1 Field quantization
1.1 Simple exercises in $\lambda \phi^{4}$ theory 1
1.2 Auxiliary field 6
1.3 Disconnected diagrams 8
1.4 Simple external field problem 9
1.5 Path integral for a free particle 11
1.6 Path integral for a general quadratic action 13
1.7 Spreading of a wave packet 16
1.8 Path integral for a harmonic oscillator 17
1.9 Path integral for a partition function 21
1.10 Partition function for an SHO system 23
1.11 Non-standard path-integral representation 25
1.12 Weyl ordering of operators 26
1.13 Generating functional for a scalar field 32
1.14 Poles in Green's function 35
2 Renormalization
2.1 Counterterms in $\lambda \phi^{4}$ theory and in QED 37
2.2 Divergences in non-linear chiral theory 39
2.3 Divergences in lower-dimensional field theories 41
$2.4 \quad n$-Dimensional 'spherical' coordinates 43
2.5 Some integrals in dimensional regularization 46
2.6 Vacuum polarization and subtraction schemes 49
2.7 Renormalization of $\lambda \phi^{3}$ theory in n dimensions 53
2.8 Renormalization of composite operators 57
2.9 Cutkosky rules 59
3 Renormalization group
3.1 Homogeneous renormalization-group equation 63
3.2 Renormalization constants 64
$3.3 \quad \beta$-function for QED 67
3.4 Behaviour of \bar{g} near a simple fixed point 69
3.5 Running coupling near a general fixed point 70
3.6 One-loop renormalization-group equation in massless $\lambda \phi^{4}$ theory 71
$3.7 \quad \beta$-function for the Yukawa coupling 72
3.8 Solving the renormalization-group equation by Coleman's method 75
3.9 Anomalous dimensions for composite operators 77
4 Group theory and the quark model
4.1 Unitary and hermitian matrices 78
4.2 SU(n) matrices 79
4.3 Reality of $S U$ (2) representations 79
4.4 An identity for unitary matrices 81
4.5 An identity for $\mathrm{SU}(2)$ matrices 82
4.6 $\mathrm{SU}(3)$ algebra in terms of quark fields 83
4.7 Combining two spin- $\frac{1}{2}$ states 85
4.8 The $\operatorname{SU}(2)$ adjoint representation 87
4.9 Couplings of $\operatorname{SU}(2)$ vector representations 89
4.10 Isospin breaking effects 90
4.11 Spin wave function of three quarks 93
4.12 Permutation symmetry in the spin-isospin space 96
4.13 Combining two fundamental representations 97
4.14 SU(3) invariant octet baryon-meson couplings 100
4.15 Isospin wave functions of two pions 105
4.16 Isospins in non-leptonic weak processes 107
$5 \quad$ Chiral symmetry
5.1 Another derivation of Nocther's current 110
5.2 Lagrangian with second derivatives 111
5.3 Conservation laws in a non-relativistic theory 113
5.4 Symmetries of the linear σ-model 115
5.5 Spontaneous symmetry breaking in the σ-model 122
5.6 PCAC in the σ-model 123
5.7 Non-linear σ-model I 126
5.8 Non-linear σ-model II 128
5.9 Non-linear σ-model III 130
5.10 SSB by two scalars in the vector representation 133
$6 \quad$ Renormalization and symmetry
6.1 Path-integral derivation of axial anomaly 136
6.2 Axial anomaly and $\eta \rightarrow \gamma \gamma$ 140
6.3 Soft symmetry breaking and renormalizability 142
6.4 Calculation of the one-loop effective potential 143
7 The Parton model and scaling
7.1 The Gottfried sum rule 146
7.2 Calculation of OPE Wilson coefficients 147
$7.3 \quad \sigma_{t o l}\left(e^{+} e^{-} \rightarrow\right.$ hadrons $)$ and short-distance physics 151
7.4 OPE of two charged weak currents 155
7.5 The total decay rate of the W-boson 156
8 Gauge symmetries
8.1 The gauge field in tensor notation
158
8.2 Gauge field and geometry 161
8.3 General relativity as a gauge theory 163
$8.4 \quad \mathrm{O}(n)$ gauge theory 165
8.5 Broken generators and Goldstone bosons 167
8.6 Symmetry breaking by an adjoint scalar 169
8.7 Symmetry breaking and the coset space 171
8.8 Scalar potential and first-order phase transition 172
8.9 Superconductivity as a Higgs phenomenon 173
$9 \quad$ Quantum gauge theories
$9.1 \quad$ Propagator in the covariant R_{ξ} gauge 175
9.2 The propagator for a massive vector field 176
9.3 Gauge boson propagator in the axial gauge 177
9.4 Gauge boson propagator in the Coulomb gauge 178
9.5 Gauge invariance of a scattering amplitude 180
9.6 Ward identities in QED 180
9.7 Nilpotent BRST charges 184
$9.8 \quad$ BRST charges and physical states 186
10 Quantum chromodynamics
10.1 Colour factors in QCD loops 188
10.2 Running gauge coupling in two-loop 191
10.3 Cross-section for three-jet events 193
10.4 Operator-product expansion of two currents 198
10.5 Calculating Wilson coefficients 201
11 Electroweak theory
11.1 Chiral spinors and helicity states 205
11.2 The polarization vector for a fermion 206
11.3 The pion decay rate and f_{π} 208
11.4 Uniqueness of the standard model scalar potential 212
11.5 Electromagnetic and gauge couplings 213
11.6 Fermion mass-matrix diagonalization 214
11.7 An example of calculable mixing angles 215
11.8 Conservation of the $B-L$ quantum number 216
12 Electroweak phenomenology
12.1 Atomic parity violation 218
12.2 Polarization asymmetry of $Z \rightarrow \bar{f} f$ 221
12.3 Simple τ-lepton decays 222
12.4 Electron neutrino scatterings 223
12.5 CP properties of kaon non-leptonic decays 225
12.6 $Z \rightarrow H H$ is forbidden 226
$12.7 \Delta I=\frac{1}{2}$ enhancement by short-distance QCD 227
12.8 Scalar interactions and the equivalence theorem 230
12.9 Two-body decays of a heavy Higgs boson 234
13 Topics in flavourdynamics
13.1 Anomaly-free condition in a technicolour theory 238
13.2 Pseudo-Goldstone bosons in a technicolour model
13.2 Pseudo-Goldstone bosons in a technicolour model 239 239
13.3 Properties of Majorana fermions 239
13.4 $\mu \rightarrow e \gamma$ and heavy neutrinos 244
13.5 Leptonic mixings in a vector-like theory 250
13.6 Muonium-antimuonium transition 252
14 Grand unification
14.1 Content of $\mathrm{SU}(5)$ representations 255
14.2 Higgs potential for $\mathrm{SU}(5)$ adjoint scalars 256
14.3 Massive gauge bosons in $\operatorname{SU}(5)$ 258
14.4 Baryon number non-conserving operators 260
14.5 $\mathrm{SO}(n)$ group algebra 260
14.6 Spinor representations of $\mathrm{SO}(n)$ 263
14.7 Relation between $\mathrm{SO}(2 n)$ and $\mathrm{SU}(n)$ groups 267
14.8 Construction of $\mathrm{SO}(2 n)$ spinors 269
15 Magnetic monopoles
15.1 The Sine-Gordon equation 275
15.2 Planar vortex field 280
15.3 Stability of soliton 282
15.4 Monopole and angular momentum 283
16 Instantons
16.1 The saddle-point method 289
16.2 An application of the saddle-point method 292
16.3 A Euclidean double-well problem 295
References 301
Index 303

