
contents 

foreword xiii 
preface xv 
acknowledgments xvii 
about this book xix 
about the author xxiii 

I Functional domain modeling: an introduction 1 
I 1 1.1 What is a domain model? 3 

1.2 Introducing domain-driven design 4 
The bounded context 5 • The domain model elements 5 
Lifecycle of a domain object 9• The ubiquitous language 14 

1.3 Thinking functionally 15 
Ah, the jays of purity 18 • Pure functions compose 22 

1.4 Managing side effects 27 
1.5 Virtues of pure model elements 29 
1.6 Reactive domain models 32 

The 3+1 view of the reactive model 33 • Debunking the "My model 
can't fail" myth 33' Being elastic and message driven 35 

1.7 Event-driven programming 36 
Events and commands 38 ' Domain events 39 

vii 



viii CONTENTS 

1.8 Functional meets reactive 41 
1.9 Summary 42 

j| Scala for Junctional domain models 44 

" 2.1 Why Scala? 45 
2.2 Static types and rich domain models 47 
2.3 Pure functions for domain behavior 49 

Purity of abstractions, revisited 53 * Other benefits of being 
referentially transparent 55 

2.4 Algebraic data types and immutability 56 
Basics: sum type and product type 56 * ADTs structure data 
in the model 58 * ADTs and pattern matching 59 
ADTs encourage immutability 60 

2.5 Functional in the small, OO in the large 61 
Modules in Scala 62 

2.6 Making models reactive with Scala 67 
Managing effects 67 * Managing failures 68 
Managing latency 70 

2.7 Summary 71 

3 Designing functional domain models 73 

3.1 The algebra of API design 74 
Why an algebraic approach ? 75 

3.2 Defining an algebra for a domain service 76 
Abstracting over evaluation 76 * Composing abstractions 77 
The final algebra of types 79 * Laws of the algebra 81 
The interpreterfor the algebra 82 

3.3 Patterns in the lifecycle of a domain model 83 
Factories—where objects come from 85 * The smart constructor 
idiom 86 * Get smarter with more expressive types 88 
Aggregates with algebraic data types 89 * Updating aggregates 
functionally with lenses 92 * Repositories and the timeless art 
of decoupling 97* Using lifecycle patterns effectively—the 
major takeaways 104 

3.4 Summary 105 



CONTENTS 

Functional patterns for domain models 107 
4.1 Patterns—the confluence of algebra, functions, 

and types 109 
Mining patterns in a domain model 110* Using functional 
patterns to make domain models parametric 111 

4.2 Basic patterns of computation in typed functional 
programming 116 
Functors—the pattern to build on 117 * The Applicative 
Functor pattern 118 * Monadic effects—a variant on the 
applicative pattern 125 

4.3 How patterns shape your domain model 134 
4.4 Evolution of an API with algebra, types, and patterns 139 

The algebra—-first draft 140 ' Refining the algebra 141 
Final composition—follow the types 143 

4.5 Tighten up domain invariants with patterns and 
types 144 
A model for loan processing 144 * Making illegal 
states unrepresentable 146 

4.6 Summary 147 

Modularization of domain models 149 
5.1 Modularizing your domain model 150 
5.2 Modular domain models—a case study 152 

Anatomy of a module 152 * Composition of modules 159 
Physical organization of modules 160* Modularity encourages 
compositionality 162 * Modularity in domain models—the 
major takeaway s 163 

5.3 Type class pattern—modularizing polymorphic 
behaviors 163 

5.4 Aggregate modules at bounded context 166 
Modules and bounded context 167* Communication between 
bounded contexts 168 

5.5 Another pattern for modularization—free monads 169 
The account repository 169 * Making it free 170 
Account repository—monads for free 172 * Interpreters for 
free monads 175 * Free monads—the takeaways 178 

5.6 Summary 179 



X CONTENTS 

Being reactive 180 

6.1 Reactive domain models 181 
6.2 Nonblocking API design with futures 184 

Asynchrony as a stackable effect 185 • Monad transformer-based 
implementation 187 • Reducing latency with parallel fetch— 
a reactive pattern 189 • Using scalaz.concurrent.Task as the 
reactive construct 193 

6.3 Explicit asynchronous messaging 196 
6.4 The stream model 197 

A sample use case 198 • A graph as a domain pipeline 202 
Back-pressure handling 204 

6.5 The actor model 205 
Domain models and actors 206 

6.6 Summary 211 

7 Modeling with reactive streams 213 

7.1 The reactive streams model 214 

7.2 When to use the stream model 215 

7.3 The domain use case 216 

7.4 Stream-based domain interaction 217 

7.5 Implementation: front office 218 

7.6 Implementation: back office 220 

7.7 Major takeaways from the stream model 223 

7.8 Making models resilient 224 
Supervision with Akka Streams 225 • Clustering for 
redundancy 226 • Persistence of data 226 

7.9 Stream-based domain models and the reactive 
principles 228 

7.10 Summary 229 



CONTENTS xi 

Reactive persistence and event sourcing 230 

8.1 Persistence of domain models 231 
8.2 Separation of concerns 233 

The read and write models of persistence 234 • Command Query 
Responsibility Segregation 235 

8.3 Event sourcing (events as the ground truth) 237 
Commands and events in an event-sourced domain model 238 
Implementing CQRS and event sourcing 240 

8.4 Implementing an event-sourced domain model 
(functionally) 242 
Events as first-class entities 243 • Commands as free monads 
over events 245 • Interpreters—hideouts for all the interesting 
stuff 247 • Projections—the read side model 252 • The event 
store 253 • Distributed CQRS—a short note 253 • Summary of 
the implementation 254 

8.5 Other models of persistence 255 
Mapping aggregates as ADTs to the relational tables 255 
Manipulating data (functionally) 257 • Reactive fetch that 
pipelines to Akka Streams 258 

8.6 Summary 259 

Testing your domain model 260 

9.1 Testing your domain model 260 
9.2 Designing testable domain models 262 

Decoupling side effects 263 • Providing custom interpreters 
for domain algebra 264 * Implementing parametricity 
and testing 265 

9.3 xUnit-based testing 266 
9.4 Revisiting the algebra of your model 267 
9.5 Property-based testing 268 

Modeling properties 268 • Verifying properties from our 
domain model 270 * Data generators 274 • Better than 
xUnit-based testing? 277 

9.6 Summary 278 



xii CONTENTS 

Summary—core thoughts and principles 279 
10.1 Looking back 279 
10.2 Rehashing core principles for functional domain 

modeling 280 
Think in expressions 280 • Abstract early, evaluate late 281 
Use the least powerful abstraction that fits 281 • Publish what to 
do, hide how to do within combinators 282 • Decouple algebra 
from the implementation 282 * Isolate bounded contexts 283 
Prefer futures to actors 283 

10.3 Looking forward 283 

index 285 


