Contents

Preface	XV
Etymological introduction	xix
List of symbols Powers of ten: standard prefixes	
1.1 What is physical chemistry: variables, relationships and laws	1
Why do we warm ourselves by a radiator?	1
Why does water get hot in a kettle?	2
Are these two colours complementary?	2
Does my radio get louder if I vary the volume control?	3
Why does the mercury in a barometer go up when the air pressure	
increases?	5
Why does a radiator feel hot to the touch when 'on', and cold when 'off'?	7
1.2 The practice of thermodynamic measurement	9
What is temperature?	9
How long is a piece of string?	14
How fast is 'greased lightning'?	15
Why is the SI unit of mass the kilogram?	17
Why is 'the material of action so variable'?	18
1.3 Properties of gases and the gas laws	20
Why do we see eddy patterns above a radiator?	20
Why does a hot-air balloon float?	20
How was the absolute zero of temperature determined?	21
Why pressurize the contents of a gas canister?	23
Why does thunder accompany lightning?	25
How does a bubble-jet printer work?	26

vi CONTENTS

	117. d	30
	What causes pressure? Why is it unwise to incinerate an empty can of air freshener?	32
		33
	4 Further thoughts on energy	33
	Why is the room warm? What do we mean by 'room temperature'?	34
	What do we mean by Toom temperature: Why do we get warmed-through in front of a fire, rather than just our	
		35
	skins?	
2	troducing interactions and bonds	37
_	1 Physical and molecular interactions	37
	What is 'dry ice'?	37
	How is ammonia fiquefied?	38
	Why does steam condense in a cold bathroom?	39
	How does a liquid-crystal display work?	40
	Why does dew form on a cool morning?	42
	How is the three-dimensional structure maintained within the DNA double	
	helix?	44
	How do we make liquid nitrogen?	47
	Why is petrol a liquid at room temperature but butane is a gas?	49
	.2 Quantifying the interactions and their influence	50
	How does mist form?	50
	How do we liquefy petroleum gas?	52
	Why is the molar volume of a gas not zero at 0 K?	54
	.3 Creating formal chemical bonds	59
	Why is chlorine gas lethal yet sodium chloride is vital for life?	59
	Why does a bicycle tyre get hot when inflated?	59
	How does a fridge cooler work?	60
	Why does steam warm up a cappuccino coffee?	61
	Why does land become more fertile after a thunderstorm?	63
	Why does a satellite need an inert coating?	64
	Why does water have the formula H ₂ O?	66
	Why is petroleum gel so soft?	67
	Why does salt form when sodium and chlorine react?	69
	Why heat a neon lamp before it will generate light?	69
	Why does lightning conduct through air?	72
	Why is argon gas inert?	74
	Why is silver iodide yellow?	75
3	nergy and the first law of thermodynamics	pag 2000
	I Introduction to thermodynamics: internal energy	77
	Why does the mouth get cold when eating ice cream?	77
	Why is skin scalded by steam?	77
	Why do we sweat?	79
	Why do we still feel hot while sweating on a humid beach?	81
	on a name ocacit;	83

CONTI	ENTS vii
Why is the water at the top of a waterfall cooler than the water at its ba	ise? 85
Why is it such hard work pumping up a bicycle tyre?	86
Why does a sausage become warm when placed in an oven?	87
Why, when letting down a bicycle tyre, is the expelled air so cold?	88
Why does a tyre get hot during inflation?	89
Can a tyre be inflated without a rise in temperature?	89
How fast does the air in an oven warm up?	90
Why does water boil more quickly in a kettle than in a pan on a stove?	91
Why does a match emit heat when lit?	94
Why does it always take 4 min to boil an egg properly?	95
Why does a watched pot always take so long to boil?	98
3.2 Enthalpy	99
How does a whistling kettle work?	99
How much energy do we require during a distillation?	102
Why does the enthalpy of melting ice decrease as the temperature	
decreases?	104
Why does water take longer to heat in a pressure cooker than in an ope	en
pan?	106
Why does the temperature change during a reaction?	107
Are diamonds forever?	109
Why do we burn fuel when cold?	111
Why does butane burn with a hotter flame than methane?	114
3.3 Indirect measurement of enthalpy	118
How do we make 'industrial alcohol'?	118
How does an 'anti-smoking pipe' work?	120
Why does dissolving a salt in water liberate heat?	123
Why does our mouth feel cold after eating peppermint?	125
How does a camper's 'emergency heat stick' work?	127
Reaction spontaneity and the direction of thermodynamic char	nge 129
4.1 The direction of physicochemical change: entropy	129
Why does the colour spread when placing a drop of dye in a saucer of	
clean water?	129
When we spill a bowl of sugar, why do the grains go everywhere and	
cause such a mess?	130
Why, when one end of the bath is hot and the other cold, do the	
temperatures equalize?	131
Why does a room containing oranges acquire their aroma?	133
Why do damp clothes become dry when hung outside?	134
Why does crystallization of a solute occur?	137
4.2 The temperature dependence of entropy	139
Why do dust particles move more quickly by Brownian motion in warr	
water?	139
Why does the jam of a jam tart burn more than does the pastry?	139

viii CONTENTS

	1.2	Introducing the Gibbs function	144
	4.5	Why is burning hydrogen gas in air (to form liquid water) a spontaneous	
		reaction?	144
		How does a reflux condenser work?	144
	4.4	The effect of pressure on thermodynamic variables	148
	4.4	How much energy is needed?	148
		Why does a vacuum 'suck'?	151
		Why do we sneeze?	152
		How does a laboratory water pump work?	153
	15	Thermodynamics and the extent of reaction	156
	7.5	Why is a 'weak' acid weak?	156
		Why does the pH of the weak acid remain constant?	158
		Why does the voltage of a battery decrease to zero?	159
		Why does the concentration of product stop changing?	162
		Why do chicken eggs have thinner shells in the summer?	165
	46	The effect of temperature on thermodynamic variables	166
	.,,	Why does egg white denature when cooked but remain liquid at room	
		temperature?	166
		At what temperature will the egg start to denature?	170
		Why does recrystallization work?	171
		,	
5		se equilibria	177
	5.1	Energetic introduction to phase equilibria	177
		Why does an ice cube melt in the mouth?	177
		Why does water placed in a freezer become ice?	181
		Why was Napoleon's Russian campaign such a disaster?	182
	5.2	Pressure and temperature changes with a single-component system:	
		qualitative discussion	184
		How is the 'Smoke' in horror films made?	184
		How does freeze-drying work?	185
		How does a rotary evaporator work?	188
		How is coffee decaffeinated?	189
	5.3	Quantitative effects of pressure and temperature change for a	
		single-component system	192
		Why is ice so slippery?	192
		What is 'black ice'?	193
		Why does deflating the tyres on a car improve its road-holding on ice?	198
	5.1	Why does a pressure cooker work?	199
	5.4	Phase equilibria involving two-component systems: partition	205
		Why does a fizzy drink lose its fizz and go flat?	205
		How does a separating funnel work?	207
		Why is an ice cube only misty at its centre?	208
		How does recrystallization work?	209
		Why are some eggshells brown and some white?	211

C	CONTENTS	ix
5.5 Phase equilibria and colligative properties		212
Why does a mixed-melting-point determination work?		212
How did the Victorians make ice cream?		216
Why boil vegetables in salted water?		217
Why does the ice on a path melt when sprinkled with salt?		218
5.6 Phase equilibria involving vapour pressure		221
Why does petrol sometimes have a strong smell and sometimes no	ot?	221
How do anaesthetics work?		222
How do carbon monoxide sensors work?		224
Why does green petrol smell different from leaded petrol?		224
Why do some brands of 'green' petrol smell different from others'	?	225
Why does a cup of hot coffee yield more steam than above a cup	of	
boiling water at the same temperature?		229
How are essential oils for aromatherapy extracted from plants?		229
Acids and Bases		122
6.1 Properties of Lowry–Brønsted acids and bases		233
Why does vinegar taste sour?		233 233
Why is it dangerous to allow water near an electrical appliance, if	motor in	233
an insulator?	water is	235
Why is bottled water 'neutral'?		236
What is 'acid rain'?		237
Why does cutting an onion make us cry?		239
Why does splashing the hands with sodium hydroxide solution ma	ke them	237
feel 'soapy'?	ice them	239
Why is aqueous ammonia alkaline?		240
Why is there no vinegar in crisps of salt and vinegar flavour?		241
How did soldiers avoid chlorine gas poisoning at the Second Battle	e of	241
Ypres?	0.01	242
How is sherbet made?		244
Why do steps made of limestone sometimes feel slippery?		244
Why is the acid in a car battery more corrosive than vinegar?		245
Why do equimolar solutions of sulphuric acid and nitric acid have		
different pHs?		250
What is the pH of a 'neutral' solution?		251
What do we mean when we say blood plasma has a 'pH of 7.4'?		251
6.2 'Strong' and 'weak' acids and bases		253
Why is a nettle sting more painful than a burn from ethanoic acid?	?	253
Why is 'carbolic acid' not in fact an acid?		254
Why does carbonic acid behave as a mono-protic acid?		259
Why is an organic acid such as trichloroethanoic acid so strong?		260
6.3 Titration analyses		261
Why does a dock leaf bring relief after a nettle sting?		261
How do indigestion tablets work?		262

x CONTENTS

	(A all buffars	207
	6.4 pH buffers Why does the pH of blood not alter after eating pickle?	267
	Why are some lakes more acidic than others?	267
	How do we make a 'constant-pH solution'?	270
	6.5 Acid-base indicators	273
	What is 'the litmus test'?	273
	Why do some hydrangea bushes look red and others blue?	274
	Why does phenolphthalein indicator not turn red until pH 8.2?	276
7	Electrochemistry	279
′	7.1 Introduction to cells: terminology and background	279
	Why does putting aluminium foil in the mouth cause pain?	279
	Why does an electric cattle prod cause pain?	281
	What is the simplest way to clean a tarnished silver spoon?	282
	How does 'electrolysis' stop hair growth?	283
	Why power a car with a heavy-duty battery yet use a small battery in a	283
	watch?	285 285
	How is coloured ('anodized') aluminium produced?	286
	How do we prevent the corrosion of an oil rig?	288
	What is a battery?	289
	Why bother to draw cells?	209
	Why bother to draw cells? Why do digital watches lose time in the winter?	293
	Why is a battery's potential not constant?	294
	What is a 'standard cell'?	295
	Why aren't electrodes made from wood?	300
	Why is electricity more dangerous in wet weather?	302
	7.2 Introducing half-cells and electrode potentials	303
	Why are the voltages of watch and car batteries different?	303
	How do 'electrochromic' car mirrors work?	305
	Why does a potential form at an electrode?	306
	7.3 Activity	308
	Why does the smell of brandy decrease after dissolving table salt in it?	308
	Why does the smell of gravy become less intense after adding salt to it?	308
	Why add alcohol to eau de Cologne?	309
	Why does the cell emf alter after adding LiCl?	312
	Why does adding NaCl to a cell alter the <i>emf</i> , but adding tonic water doesn't?	
	Why does MgCl ₂ cause a greater decrease in perceived concentration tha	314
	KCI?	
	Why is calcium better than table salt at stopping soap lathering?	315
	Why does the solubility of AgCl change after adding MgSO ₄ ?	316
	7.4 Half-cells and the Nernst equation	318 321
	Why does sodium react with water yet copper doesn't?	32

		Why does a torch battery eventually 'go flat'?	325
		Why does E _{AgCl,Ag} change after immersing an SSCE in a solution of salt?	326
		Why 'earth' a plug?	328
	7.5	Concentration cells	333
		Why does steel rust fast while iron is more passive?	333
		How do pH electrodes work?	336
	7.6	Transport phenomena	339
		How do nerve cells work?	339
		What is a 'salt bridge'?	342
	7.7	Batteries	343
		How does an electric eel produce a current?	343
		What is the earliest known battery?	345
8	Che	mical kinetics	349
	8.1	Kinetic definitions	349
		Why does a 'strong' bleach clean faster than a weaker one does?	349
		Why does the bleaching reaction eventually stop?	351
		Why does bleach work faster on some greases than on others?	354
		Why do copper ions amminate so slowly?	356
		How fast is the reaction that depletes the ozone layer?	358
		Why is it more difficult to breathe when up a mountain than at ground	
		level?	359
	8.2	Qualitative discussion of concentration changes	361
		Why does a full tank of petrol allow a car to travel over a constant	
		distance?	361
		Why do we add a drop of bromine water to a solution of an alkene?	362
		When magnesium dissolves in aqueous acid, why does the amount of	
		fizzing decrease with time?	364
	8.3	Quantitative concentration changes: integrated rate equations	368
		Why do some photographs develop so slowly?	368
		Why do we often refer to a 'half-life' when speaking about radioactivity?	378
		How was the Turin Shroud 'carbon dated'?	382
		How old is Ötzi the iceman?	385
		Why does the metabolism of a hormone not cause a large chemical change	
		in the body?	387
		Why do we not see radicals forming in the skin while sunbathing?	388
	8.4	Kinetic treatment of complicated reactions	393
		Why is arsenic poisonous?	393
		Why is the extent of Walden inversion smaller when a secondary alkyl	20.4
		halide reacts than with a primary halide?	394
		Why does 'standing' a bottle of wine cause it to smell and taste better?	397
		Why fit a catalytic converter to a car exhaust?	399
		Why do some people not burn when sunbathing?	400
		How do Reactolite [®] sunglasses work?	403

CONTENTS xi

xii CONTENTS

0.5	Thermodynamic considerations: activation energy, absolute reaction rates	
8.5		408
	and catalysis Why prepare a cup of tea with boiling water?	408
	Why store food in a fridge?	408
	Why do the chemical reactions involved in cooking require heating?	409
	Why does a reaction speed up at higher temperature?	411
	Why does the body become hotter when ill, and get 'a temperature'?	415
	Why are the rates of some reactions insensitive to temperature?	416
	What are catalytic converters?	420
a Db.	vsical chemistry involving light: spectroscopy and	
	otochemistry	423
-	Introduction to photochemistry	423
7.1	Why is ink coloured?	423
	Why do neon streetlights glow?	424
	Why do we get hot when lying in the sun?	425
	Why is red wine so red?	426
	Why are some paints red, some blue and others black?	427
	Why can't we see infrared light with our eyes?	429
	How does a dimmer switch work?	433
	Why does UV-b cause sunburn yet UV-a does not?	434
	How does a suntan protect against sunlight?	436
	How does sun cream block sunlight?	439
	Why does tea have a darker colour if brewed for longer?	442
	Why does a glass of apple juice appear darker when viewed against a	
	white card?	442
	Why are some paints darker than others?	444
	What is ink?	445
9.2	Photon absorptions and the effect of wavelength	446
	Why do radical reactions usually require UV light?	446
	Why does photolysis require a powerful lamp?	452
	Why are spectroscopic bands not sharp?	453
	Why does hydrogen look pink in a glow discharge?	455
	Why do surfaces exposed to the sun get so dusty?	457
	Why is microwave radiation invisible to the eye?	458
9.3	Photochemical and spectroscopic selection rules	459
	Why is the permanganate ion so intensely coloured?	459
	Why is chlorophyll green?	461
	Why does adding salt remove a blood stain?	462
	What is gold-free gold paint made of?	462
	What causes the blue colour of sapphire?	463
	Why do we get hot while lying in the sun?	464
	What is an infrared spectrum?	467
	Why does food get hot in a microwave oven?	469
	Are mobile phones a risk to health?	471

		CONTENTS	xiii
	9.4	Photophysics: emission and loss processes	472
		How are X-rays made?	472
		Why does metal glow when hot?	473
		How does a light bulb work?	474
		Why is a quartz-halogen bulb so bright?	474
		What is 'limelight'?	476
		Why do TV screens emit light?	476
		Why do some rotting fish glow in the dark?	478
		How do 'see in the dark' watch hands work?	479
		How do neon lights work?	480
		How does a sodium lamp work?	481
		How do 'fluorescent strip lights' work?	482
	9.5	Other optical effects	483
		Why is the mediterranean sea blue?	483
		Do old-master paintings have a 'fingerprint'?	485
10	Ads	orption and surfaces, colloids and micelles	487
		Adsorption and definitions	487
		Why is steam formed when ironing a line-dried shirt?	487
		Why does the intensity of a curry stain vary so much?	489
		Why is it difficult to remove a curry stain?	492
		Why is <i>iron</i> the catalyst in the Haber process?	494
		Why is it easier to remove a layer of curry <i>sauce</i> than to remove a curry <i>stain</i> ?	496
		How does water condense onto glass?	497
		How does bleach remove a dye stain?	498
		How much beetroot juice does the stain on the plate contain?	499
		Why do we see a 'cloud' of steam when ironing a shirt?	503
	10.2	Colloids and interfacial science	504
		Why is milk cloudy?	504
		What is an 'aerosol' spray?	505
		What is 'emulsion paint'?	506
		Why does oil not mix with water?	508
	10.3	Colloid stability	509
		How are cream and butter made?	509
		How is chicken soup 'clarified' by adding eggshells?	510
		How is 'clarified butter' made?	510
		Why does hand cream lose its milky appearance during hand rubbing?	511
		Why does orange juice cause milk to curdle?	512
		How are colloidal particles removed from waste water?	513
	10.4	Association colloids: micelles	514
		Why does soapy water sometimes look milky?	514
		What is soap?	517
		Why do soaps dissolve grease?	518

xiv CONTENTS

Why is old washing-up water oily when cold	but not when hot?	519
Why does soap generate bubbles?		521
Why does detergent form bubbles?		522
Answers to SAQs		525
Bibliography		533
ndex	5	565