Table des matières

Préface		
VI La partie g	géométrique de la formule des traces tordue	
	-	589
VI.1 Les défin	nitions	591
VI.1.1		591
VI.1.2	Remarque sur les hypothèses	595
VI.1.3		595
VI.1.4		596
VI.1.5		598
VI.1.6	_	599
VI.1.7	312	601
VI.1.8		602
VI.1.9	-	602
VI.1.10		604
VI.1.11		605
VI.1.12		606
VI.1.13	Le cas non ramifié	607
VI.1.14	Intégrales orbitales pondérées invariantes et systèmes	
	de fonctions B	607
VI.1.15	Variante avec caractère central	613
VI.1.16	K-espaces	615
VI.1.17	K-espaces de Levi	618
VI.2 La parti	e géométrique de la formule des traces	621
VI.2.1	La partie géométrique de la formule des traces	
	non invariante	621
VI.2.2	Le terme unipotent de la formule des traces	
	non invariante	623
VI.2.3	Les distributions associées à une classe rationnelle	
	semi-simple	625

vi Table des matières

	VI.2.4	Développement de la partie géométrique de la formule des traces non invariante	630
	VI.2.5	Variante avec caractère central	630
	VI.2.6	Variante avec caractère central, suite	639
	VI.2.0 VI.2.7	La partie géométrique de la formule des traces	000
	V 1.2.1	ω -équivariante	641
	VI.2.8	La partie géométrique de la formule des traces invariante,	
	V 1.2.0	variante avec caractère central	643
	VI.2.9	Variante pour les K -espaces	643
VI.3	Endosco		644
	VI.3.1	Données endoscopiques	644
	VI.3.2	Plongements de tores et ramification	645
	VI.3.3	Données auxiliaires	648
	VI.3.4	Levi	650
	VI.3.5	La partie géométrique de la formule des traces invariante	
		pour une donnée endoscopique	651
	VI.3.6	Facteur de transfert global, cas particulier	652
	VI.3.7	Utilisation du facteur de transfert global, cas particulier	664
	VI.3.8	Une construction auxiliaire	666
	VI.3.9	Facteur de transfert global, cas général	671
	VI.3.10	Adaptation aux K -espaces	676
VI.4	Intégral	les orbitales pondérées et endoscopie	677
	VI.4.1	Intégrales orbitales pondérées invariantes stables	677
	VI.4.2	Formules de décomposition	678
	VI.4.3	Une propriété de support	683
	VI.4.4	Le système de fonctions $B^{\tilde{G}}$	684
	VI.4.5	Intégrales orbitales pondérées ω -équivariantes	
		endoscopiques	685
	VI.4.6	Le résultat de comparaison des intégrales orbitales	
		pondérées ω -équivariantes	
	VI.4.7	Une autre forme du résultat de comparaison	
	VI.4.8	Le cas quasi-déployé et à torsion intérieure	
VI.5		nule des traces stable	
	VI.5.1	Quelques définitions	
	VI.5.2	Les distributions $SA^{\tilde{G}}(V,\mathcal{O})$	
	VI.5.3	Propriétés des distributions $SA^G(V, \mathcal{O})$	
	VI.5.4	Les distributions $A^{\tilde{G},\mathcal{E}}(V,\mathcal{O},\omega)$	696
	VI.5.5	Le théorème d'Arthur	697
	VI.5.6	Un théorème complémentaire concernant l'endoscopie	
		non standard	697

Table des matières vii

	VI.5.7	Réduction du théorème 5.6	700
	VI.5.8	Insertion du théorème 5.6 dans les hypothèses	
		de récurrence	703
	VI.5.9	La formule stable	704
	VI.5.10	Le théorème principal	705
VI.6	Preuve o	conditionnelle du théorème 5.10	705
	VI.6.1	Rappel	705
	VI.6.2	Au sujet des constantes	706
	VI.6.3	Combinatoire des sommes	707
	VI.6.4	Remarque sur l'action des groupes d'automorphismes	
		de données endoscopiques	708
	VI.6.5	La combinatoire	708
	VI.6.6	Un résultat d'annulation	710
	VI.6.7	Une première proposition auxiliaire	712
	VI.6.8	Une deuxième proposition auxiliaire	714
	VI.6.9	Réduction de la proposition 6.6	714
	VI.6.10	Preuve de la proposition 6.8	719
	VI.6.11	Le théorème 5.10	745
VII I	Descente g	globale	
	-	-	747
			749
	VII.1.1		749
	VII.1.2		751
	VII.1.3		756
	VII.1.4		757
	VII.1.5	Rappels sur le cas local non ramifié	757
	VII.1.6	Paramètres dans le cas local non ramifié	760
	VII.1.7	Paramètres et endoscopie	763
	VII.1.8	Retour sur la correspondance entre classes de	
		conjugaison stable ,	765
	VII.1.9	Distributions associées à un paramètre	767
	VII.1.10	Distributions stables et endoscopiques associées	
		à un paramètre	768
	VII.1.11	Formules dans la situation avec caractère central	770
	VII.1.12	Relation avec les distributions associées aux classes	
		de conjugaison stable locales	772
VII.2	Formules	3	774
	VII.2.1	Complément sur le lemme fondamental pondéré	
	VII.2.2	Version globale du lemme fondamental pondéré	777
	VII.2.3	Enoncé des formules de scindage	779

viii Table des matières

	VII.2.4	Preuve de la proposition 2.3	781
	VII.2.5	Extension de l'ensemble fini de places	787
VII.3	Enoncés	de nouveaux théorèmes	787
	VII.3.1	Le théorème d'Arthur	787
	VII.3.2	Définition d'une autre distribution stable	788
	VII.3.3	Enoncé du théorème principal	790
	VII.3.4	Le théorème 3.3 implique les théorèmes 3.2, 1.10(ii)	
		et [VI] 5.2	790
	VII.3.5	Le théorème 3.3 implique presque les théorèmes 1.10(i)	
		et [VI] 5.4	792
	VII.3.6	Le théorème [VI] 5.4 implique le théorème 1.10(i) et étend	
		le théorème 3.3	793
	VII.3.7	Quelques cas faciles	794
VII.4			795
	VII.4.1	Mesures de Tamagawa	795
	VII.4.2		796
	VII.4.3		799
	VII.4.4	Preuve de la proposition 4.3	800
	VII.4.5	Données endoscopiques et revêtement	806
	VII.4.6	Coefficients stables et revêtement	809
VII.5	Descente	e	811
	VII.5.1	Une première transformation	811
	VII.5.2	Descente des données endoscopiques	814
	VII.5.3	La sous-somme attachée à une donnée endoscopique ${\bf H}$	817
	VII.5.4	Propriétés de relevance	818
	VII.5.5	Les places hors de V	820
	VII.5.6	Une conséquence	822
	VII.5.7	Facteurs de transfert	825
	VII.5.8	Début du calcul	826
	VII.5.9	Utilisation du théorème [VI] 5.6	830
VII.6	Calculs	de facteurs de transfert	833
	VII.6.1	Rappels cohomologiques	833
	VII.6.2	Groupes de cohomologie abélienne	835
	VII.6.3	Un lemme de densité	836
	VII.6.4	Fibres de la descente	837
	VII.6.5	Dualités	844
	VII.6.6	Description d'un annulateur	847
	VII.6.7	L'ensemble $D_{\mathbb{A}_F}$	849
	VII.6.8	L'ensemble D_F	854
	VII.6.9	Un résultat d'annulation	857

Table des matières ix

	VII.6.10	Comparaison de deux facteurs de transfert	368
VII.7	Le cas o	ù $D_F[d_V]$ est non vide $\dots \dots \dots$	371
	VII.7.1	Une proposition de nullité	371
	VII.7.2	Premier calcul d'une expression intervenant en 5.9 8	373
	VII.7.3	Mise en place de la situation	373
	VII.7.4	Une première propriété de nullité	376
	VII.7.5	Description de l'ensemble $\dot{\mathcal{Y}}_{\star}[d_V]$	378
	VII.7.6	Définition d'un homomorphisme \mathbf{q}_{∞}	881
	VII.7.7	L'image de l'homomorphisme \mathbf{q}_{∞}	886
	VII.7.8	Un caractère de Q_{∞}	394
	VII.7.9	Preuve de la proposition 7.1	399
	VII.7.10	Calcul d'une constante	000
	VII.7.11	Calcul de $ P^0 $	000
	VII.7.12	Un premier calcul de $ P^0 \mathbb{U} ^{-1}$	003
			07
	VII.7.14	Calcul de $d(I_{\star},G)$	10
	VII.7.15	Preuve de la proposition 7.10	15
			15
VII.8			16
	VII.8.1	Suite du calcul de la section 5	16
	VII.8.2	Elimination de la somme en H	17
	VII.8.3	Elimination des revêtements simplement connexes 9	18
	VII.8.4	Fin de la preuve	19
VII.9	Preuve d	lu théorème [VI] 5.6	23
	VII.9.1	• •	23
	VII.9.2	Le lemme fondamental pondéré non standard 9	23
	VII.9.3	Extension aux Levi	
	VII.9.4	Globalisation	26
	VII.9.5	Généralisation du théorème 9.1	28
	VII.9.6	Extension de l'ensemble fini de places 9	30
	VII.9.7	Preuve du théorème 9.1	31
1/111	Lionalios	tion car sur un corne de base local non archimédian	
		tion $\epsilon_{ ilde{M}}$ sur un corps de base local non-archimédien 9	33
			35
V 111.1		IVI	35
			36
			38
		· M	41
		I I	41
		IVI	
	VIII.1.6	Propriétés de l'application ${}^c\theta_{\tilde{M}}^G$	47

	VIII.1.7	Fonctions de Schwartz
	VIII.1.8	Une propriété d'annulation
	VIII.1.9	Une variante des intégrales orbitales pondérées
		ω -équivariantes
VIII.2	Stabilisa	tion de l'application ${}^c\theta_{\tilde{M}}$
		Fonctions $\omega_{\tilde{S}}$ et endoscopie
	VIII.2.2	Les applications ${}^cS\theta_{\tilde{M}}^{\tilde{G}}$
	VIII.2.3	Commutation à l'induction
	VIII.2.4	Une propriété d'annulation
	VIII.2.5	Une variante des intégrales orbitales pondérées stables 960
VIII.3	L'applica	ation endoscopique ${}^c heta_{\tilde{M}}^{\tilde{G},\mathcal{E}}$
		Définition d'une première application endoscopique 961
	VIII.3.2	Action d'un groupe d'automorphismes
		Commutation à l'induction
	VIII.3.4	Définition de ${}^c\theta_{\tilde{M}}^{\tilde{G},\mathcal{E}}$
		Commutation à l'induction
	VIII.3.6	${}^{c}\theta_{\tilde{M}}^{\tilde{G},\mathcal{E}}(\mathbf{f})$ est de Schwartz
		Une propriété d'annulation
	VIII.3.8	Egalité de deux applications linéaires
	VIII.3.9	Variante des intégrales orbitales pondérées elliptiques 968
VIII.4	Les preu	ves et l'application $\epsilon_{\tilde{M}}$
	VIII.4.1	Lien entre les intégrales orbitales pondérées stables
		ou endoscopiques et leurs variantes
	VIII.4.2	Preuves des propositions 2.2 et 2.5
	VIII.4.3	Preuve conditionnelle des propositions 3.8 et 3.9 973
	VIII.4.4	L'application $\epsilon_{\tilde{M}}$
IX Pr	opriétés	des intégrales orbitales pondérées ω -équivariantes sur le corps réel
	•	
IX.1	Stabilisa	tion d'une famille d'équations différentielles
	IX.1.1	Opérateurs différentiels
	IX.1.2	Les équations différentielles
	IX.1.3	Propriétés des opérateurs $\delta_{\tilde{M}}^{\tilde{G}}(z)$
	IX.1.4	Rappels sur l'action adjointe
	IX.1.5	Une application d'Harish-Chandra
	IX.1.6	Preuve de la proposition 1.3
	IX.1.7	L'opérateur de Casimir
	IX.1.8	Variante avec caractère central
IX.2	Endosco	pie et opérateurs différentiels
	IX.2.1	Version stable des opérateurs différentiels

Table des matières xi

	1X.2.2	Proprietes des versions stables des operateurs
	IV o o	différentiels
	IX.2.3 IX.2.4	Variante endoscopique des opérateurs différentiels 1007
	IX.2.4 IX.2.5	Propriétés des opérateurs différentiels endoscopiques 1012
rv o		Le résultat de stabilisation
IX.3	IX.3.1	Constant considérations formalles
		Quelques considérations formelles
	IX.3.2	Majoration des intégrales orbitales pondérées ω -équivariantes
	IX.3.3	Majoration des intégrales orbitales pondérées stables 1022
	IX.3.4	Majoration des intégrales orbitales endoscopiques 1023
IX.4	Propriét	és locales
	IX.4.1	Sauts des intégrales orbitales pondérées ω -équivariantes 1025
	IX.4.2	Sauts des intégrales orbitales pondérées stables 1027
	IX.4.3	Sauts des intégrales orbitales pondérées endoscopiques 1043
	IX.4.4	Formules d'inversion
	IX.4.5	Preuve de la proposition 4.3
IX.5	Des vari	antes de l'application $\phi_{ ilde{M}}$
	IX.5.1	Normalisation partielle des opérateurs d'entrelacement 1062
	IX.5.2	Caractères pondérés rationnels
	IX.5.3	L'application $\phi_{\tilde{M}}^{\mathrm{rat},\tilde{G}}$
	IX.5.4	Relation entre les applications $\phi_{\tilde{M}}^{\tilde{G}}$ et $\phi_{\tilde{M}}^{{\rm rat},\tilde{G}}$ 1067
	IX.5.5	L'application $\theta_{\tilde{M}}^{\mathrm{rat},\tilde{G}}$
	IX.5.6	Un lemme auxiliaire
	IX.5.7	Propriétés de l'application $\theta_{\tilde{M}}^{{\rm rat},\tilde{G}}$
	IX.5.8	L'application ${}^c\phi_{\tilde{M}}^{\tilde{G}}$
		L'application ${}^c\theta_{\tilde{M}}^{{\rm rat},\tilde{G}}$
	IX.5.10	Propriétés de l'application ${}^c\theta_{\tilde{M}}^{{\rm rat},\tilde{G}}$
	IX.5.11	L'application ${}^c\theta_{\tilde{M}}^{\tilde{G}}$
	IX.5.12	Relation entre les applications $\theta_{\tilde{M}}^{{\rm rat},\tilde{G}}$, ${}^c\theta_{\tilde{M}}^{{\rm rat},\tilde{G}}$ et ${}^c\theta_{\tilde{M}}^{\tilde{G}}$ 1082
	IX.5.13	Une variante des intégrales orbitales pondérées
		ω -équivariantes
	IX.5.14	Preuve des propositions 5.9, 5.11 et de l'assertion 5.13(2)
	IX.5.15	l'assertion 5.13(2)
T37 4	D 1	M
IX.6		opie et applications $\theta_{\tilde{M}}^{\mathrm{rat},\tilde{G}}$, ${}^{c}\theta_{\tilde{M}}^{\mathrm{rat},\tilde{G}}$, ${}^{c}\theta_{\tilde{M}}^{\tilde{G}}$
	1X.0.1	Les applications stables

xii Table des matières

	IX.6.2	Propriétés de l'application ${}^cS\theta^{{\rm rat},G}_{\bar{M}}$
	IX.6.3	Propriétés de l'application $S\theta_{\tilde{M}}^{\mathrm{rat},\tilde{G}}$
	IX.6.4	Stabilité de l'application $\sigma_{\tilde{M}}^{\tilde{G}}$
	IX.6.5	Une variante des intégrales orbitales pondérées stables 1094
	IX.6.6	Les applications endoscopiques
	IX.6.7	Egalité d'applications linéaires 1096
	IX.6.8	Propriétés de l'application $\theta_{K\tilde{M}}^{\mathrm{rat},K\tilde{G},\mathcal{E}}$
	IX.6.9	Egalité des fonctions $\rho_{K\tilde{M}}^{K\tilde{G}}$ et $\rho_{K\tilde{M}}^{K\tilde{G},\mathcal{E}}$
	IX.6.10	Variante des intégrales orbitales pondérées elliptiques 1099
	IX.6.11	Reformulation des énoncés dans le cas quasi-déployé
		et à torsion intérieure
IX.7	Les preu	ives des assertions de la section 6
	IX.7.1	Lien entre les intégrales orbitales pondérées endoscopiques
		et leurs variantes
	IX.7.2	Relation entre les applications $\theta_{K\tilde{M}}^{\text{rat},KG,\mathcal{E}}$, ${}^{c}\theta_{K\tilde{M}}^{\text{rat},KG,\mathcal{E}}$,
		$c\theta_{K\tilde{G},\mathcal{E}}^{K\tilde{G},\mathcal{E}}$
	IX.7.3	Preuves des propositions 6.1, 6.5 et du lemme 6.4 1105
	IX.7.4	Preuve conditionnelle des propositions 6.7 et 6.10
		et du lemme 6.9
	IX.7.5	Variante dans le cas quasi-déployé et à torsion
		intérieure
IX.8		eation $\epsilon_{\tilde{M}}$
	IX.8.1	Un lemme élémentaire
	IX.8.2	Définition locale
	IX.8.3	Définition globale
	IX.8.4	Retour sur la formule des traces locale symétrique
	IX.8.5	Stabilisation de la formule précédente
	IX.8.6	Version endoscopique de la proposition 8.4
	IX.8.7	Expression de $\epsilon_{K\tilde{M}}(f)$
	IX.8.8	Description des fonctions $\xi_{K\tilde{R},\tilde{\sigma},H}$
	IX.8.9	K-finitude
X St		n spectrale
X.1		ction
X.2		ns générales
X.3	Stabilis	ation de la formule des traces locales tordues
	X.3.1	Le côté géométrique de la formule des traces locales 1149
	X.3.2	Stabilisation du côté géométrique de la formule
		des traces locales et stabilisation des intégrales
		orbitales pondérées

Table des matières xiii

	X.3.3	Le côté spectral de la formule des traces locales et
		sa stabilisation
	X.3.4	Elimination de certaines conditions
	X.3.5	Stabilisation géométrique sous hypothèses
	X.3.6	Une construction uniforme d'extensions de corps
		de nombres
	X.3.7	Une réduction étonnamment simple
	X.3.8	Le cas des tores déployés
	X.3.9	Fin des réductions
X.4	Les cara	actères pondérés et leur stabilisation
	X.4.1	Caractère pondéré aux places non ramifiées et stabilisation
	X.4.2	Caractères pondérés invariants
	X.4.3	Le cas de la torsion intérieure
	X.4.4	Les caractères pondérés endoscopiques
	X.4.5	La stabilisation géométrique et la stabilisation spectrale 1195
	X.4.6	Caractères pondérés semi-globaux
	X.4.7	Caractères pondérés semi-globaux et endoscopie,
		théorème d'annulation
	X.4.8	Caractères pondérés semi-globaux et endoscopie,
		théorème de transfert
	X.4.9	Caractères pondérés globaux
X.5	Le côté	spectral de la formule des traces
	X.5.1	Rappel des termes discrets
	X.5.2	Rappel des termes continus
	X.5.3	Représentations semi-finies
	X.5.4	Autres définitions des représentations semi-finies 1208
	X.5.5	Représentation semi-finie et stabilité
	X.5.6	Enoncé du lemme fondamental tordu
	X.5.7	Transfert d'une représentation semi-finie stable 1215
	X.5.8	La variante stable de la partie discrète de la formule
		des traces
	X.5.9	Enoncé de la stabilisation spectrale
	X.5.10	L'hypothèse spectrale de récurrence
	X.5.11	Réduction de la stabilisation spectrale
X.6	Digressi	on, automorphismes de la situation
	X.6.1	Action du groupe adjoint ou de son analogue dans
		le cas tordu
	X.6.2	Fonction caractéristique du compact et action
		du groupe adjoint

xiv Table des matières

	X.6.3	Action globale du groupe adjoint et de son analogue
		dans le cas tordu
X.7	Fin de la	a stabilisation locale géométrique
	X.7.1	Mise en place des objets
	X.7.2	Stabilisation de la formule des traces pour certaines
		fonctions
	X.7.3	Propriété de convergence absolue pour la formule
		des traces
	X.7.4	Globalisation
	X.7.5	Propriétés de finitude du nombre de certaines données
		endoscopiques
	X.7.6	Globalisation fine
	X.7.7	Preuve de la stabilisation géométrique locale
X.8	Stabilis	ation de la formule des traces
	X.8.1	Stabilisation spectrale
	X.8.2	Une décomposition parfois plus fine de l'égalité de
		stabilisation
	X.8.3	Un exemple, le cas de $GL(n)$ tordu
	X.8.4	Une remarque sur la finitude de $\pi_{\mathrm{disc},\nu}(c^V)$ et son
		calcul pour les groupes classiques
	X.8.5	Vérification de toutes les hypothèses de récurrence,
		récapitulatif
	X.8.6	Stabilisation géométrique
	X.8.7	Stabilisation de la formule des traces locale
X.9	Preuve	de 7.4
		e : représentations elliptiques ; caractérisation et
		e transfert de caractères
Intro	duction	
XI.1	Quelqu	les définitions de base
XI.2	Caract	érisation des représentations elliptiques
	XI.2.1	Rappel des définitions de [81]
	XI.2.2	La théorie du R-groupe
	XI.2.3	Caractérisation des représentations elliptiques
	XI.2.4	Calcul de modules de Jacquet dans le cas
		non-archimédien
	XI.2.5	Calcul de la trace tordue sur les modules de Jacquet 1260
	XI.2.6	Le calcul en général
	XI.2.7	Le cas archimédien
	XI.2.8	
	XI.2.9	Une formule d'induction

Table des matières xv

	XI.2.10	Preuve du théorème de XI.2.3
	XI.2.11	Transfert de représentations elliptiques
	XI.2.12	Preuve du corollaire dans le cas archimédien 1269
XI.3	Stabilité	
	XI.3.1	Décomposition des représentations stables de \tilde{G}
XI.4	Représer	ntations elliptiques comme transfert
	XI.4.1	Une propriété de finitude des représentations elliptiques 1273
	XI.4.2	Globalisation et approximation
	XI.4.3	Preuve de la première partie du théorème
	XI.4.4	Prolongement des formules de transfert entre
		représentations elliptiques et fin de la preuve
XI.5	Conséqu	ences
	XI.5.1	Prolongement des formules de transfert
	XI.5.2	Un critère spectral de nullité pour le transfert
		d'une fonction
XI.6	Transfer	t et ramification
XI.7	Calculs	cohomologiques
	XI.7.1	Préliminaires sur les classes de conjugaisons stables
		modulo le centre
	XI.7.2	Action centrale et classe de conjugaison stable 1288
XI.8		mation
	XI.8.1	Enoncé
	XI.8.2	Rappel des globalisations
	XI.8.3	Globalisation fine
	XI.8.4	Début de la preuve du théorème
	XI.8.5	Preuve du lemme
XI.9	La form	ule des traces simple
XI.10	La form	ule des traces simple avec caractère
Index	des nota	tions
Biblio	graphie .	