Inhalt

1	Einführung — 1
1.1	Ziel, Inhalt und Aufbau —— 1
1.2	Die notwendige Umgebung zur Programmentwicklung —— 3
1.2.1	Betriebssystem —— 3
1.2.2	Software-Pakete —— 5
1.2.3	Grafik —— 5
1.2.4	Programmentwicklung und einfaches Skript —— 5
1.3	Ein erstes Beispiel – Die Logistische Abbildung — 6
1.3.1	Abbildung —— 6
1.3.2	Programm — 7
1.3.3	Aufgaben —— 9
2	Abbildungen —— 11
2.1	Frenkel–Kotorova-Modell —— 11
2.1.1	Klassische Formulierung —— 11
2.1.2	Stationäre Lösungen —— 12
2.1.3	Standardabbildung —— 12
2.1.4	Aufgaben —— 13
2.2	Chaos und Lyapunov-Exponenten —— 13
2.2.1	Stabilität, Schmetterlingseffekt und Chaos —— 14
2.2.2	Lyapunov-Exponent der Logistischen Abbildung —— 14
2.2.3	Lyapunov-Exponenten mehrdimensionaler Abbildungen —— 16
2.3	Affine Abbildungen und Fraktale —— 20
2.3.1	Sierpinski-Dreieck —— 20
2.3.2	Von Farnen und anderen Gewächsen — 22
2.3.3	Aufgaben —— 23
2.4	Fraktale Dimension —— 23
2.4.1	Box Counting —— 23
2.4.2	Beispiel Sierpinski-Dreieck —— 24
2.4.3	Aufgabe —— 26
2.5	Neuronale Netze —— 26
2.5.1	Perzeptron —— 26
2.5.2	Selbstorganisierte Karten: das Modell von Kohonen —— 33
2.5.3	Aufgaben —— 36
3	Dynamische Systeme —— 39
3.1	Quasilineare Differentialgleichungen —— 39
3.1.1	Beispiel: Logistische Abbildung und Logistische DGL —— 40
3.1.2	Aufgaben —— 41

3.2	Fixpunkte und Instabilitäten — 42
3.2.1	Fixpunkte —— 42
3.2.2	Stabilität —— 42
3.2.3	Trajektorien —— 43
3.2.4	Gradientendynamik —— 44
3.2.5	Spezialfall N = 1 44
3.2.6	Spezialfall <i>N</i> = 2 —— 44
3.2.7	Spezialfall N = 3 — 46
3.3	Hamilton'sche Systeme —— 48
3.3.1	Hamilton-Funktion und kanonische Gleichungen —— 49
3.3.2	Symplektische Integratoren — 50
3.3.3	Poincaré-Abbildung —— 55
4	Gewöhnliche Differentialgleichungen I —— 59
4.1	Newton'sche Mechanik —— 59
4.1.1	Bewegungsgleichungen —— 59
4.1.2	Das mathematische Pendel —— 60
4.2	Numerische Verfahren niedrigster Ordnung — 61
4.2.1	Euler-Verfahren —— 61
4.2.2	Numerische Stabilität des Euler-Verfahrens — 63
4.2.3	Implizite und explizite Verfahren —— 64
4.3	Verfahren höherer Ordnung —— 65
4.3.1	Verfahren von Heun —— 65
4.3.2	Aufgabe: Crank-Nicolson-Verfahren — 68
4.3.3	Runge–Kutta-Verfahren —— 68
4.4	RK4-Anwendung: Himmelsmechanik —— 74
4.4.1	Kepler-Problem: geschlossene Planetenbahnen —— 74
4.4.2	Quasiperiodische Planetenbahnen, Periheldrehung — 77
4.4.3	Mehrere Planeten: Ist unser Sonnensystem stabil? —— 77
4.4.4	Das reduzierte Drei-Körper-Problem —— 80
4.5	Molekulare Dynamik (MD) —— 87
4.5.1	Klassische Formulierung —— 87
4.5.2	Randbedingungen —— 88
4.5.3	Mikrokanonisches und kanonisches Ensemble —— 89
4.5.4	Algorithmus —— 90
4.5.5	Auswertung —— 91
4.5.6	Aufgaben —— 95
4.6	Chaos —— 96
4.6.1	Harmonisch angetriebenes Pendel —— 97
4.6.2	Poincaré-Schnitt und Bifurkationsdiagramm —— 98
4.6.3	Lyapunov-Exponenten —— 99

4.6.4	Fraktale Dimension —— 108
4.6.5	Rekonstruktion von Attraktoren —— 110
4.7	DGLs mit periodischen Koeffizienten 112
4.7.1	Floquet-Theorem —— 112
4.7.2	Stabilität von Grenzzyklen —— 113
4.7.3	Parametrische Instabilität: Pendel mit oszillierendem
	Aufhängepunkt —— 114
4.7.4	Mathieu-Gleichung —— 116
4.7.5	Aufgaben —— 117
5	Gewöhnliche Differentialgleichungen II —— 119
5.1	Vorbemerkungen —— 119
5.1.1	Randbedingungen —— 119
5.1.2	Beispiel: Der schiefe Wurf —— 120
5.2	Finite Differenzen —— 121
5.2.1	Diskretisierung —— 121
5.2.2	Beispiel Schrödinger-Gleichung —— 124
5.3	Methode der gewichteten Residuen —— 129
5.3.1	Verschiedene Verfahren —— 129
5.3.2	Beispiel Stark-Effekt —— 131
5.4	Nichtlineare Randwertprobleme —— 133
5.4.1	Nichtlineare Systeme —— 133
5.4.2	Newton-Raphson —— 134
5.4.3	Beispiel: nichtlineare Schrödinger-Gleichung — 136
5.4.4	Beispiel: Flug zum Mond —— 139
5.5	Schießverfahren —— 142
5.5.1	Die Methode —— 142
5.5.2	Beispiel: senkrechter Fall mit quadratischer Reibung —— 143
5.5.3	Gleichungssysteme —— 144
5.5.4	Aufgaben —— 145
6	Partielle Differentialgleichungen I, Grundlagen — 147
6.1	Klassifizierung —— 147
6.1.1	PDGL 1. Ordnung —— 147
6.1.2	PDGL 2. Ordnung —— 150
6.1.3	Rand- und Anfangsbedingungen —— 152
6.2	Finite Differenzen —— 155
6.2.1	Diskretisierung —— 156
6.2.2	Elliptische PDGL, Beispiel Poisson-Gleichung —— 159
6.2.3	Parabolische PDGL, Beispiel Wärmeleitungsgleichung —— 165
6.2.4	Hyperbolische PDGL, Beispiel Konvektionsgleichung, Wellengleichung —— 170

6.3	Andere Diskretisierungsverfahren — 176
6.3.1	Chebyshev-Spektralmethode —— 177
6.3.2	Spektral-Methode mittels Fourier-Transformation —— 181
6.3.3	Finite-Elemente-Methode —— 185
6.4	Nichtlineare PDGL —— 190
6.4.1	Reelle Ginzburg-Landau-Gleichung —— 190
6.4.2	Numerische Lösung, explizites Verfahren —— 191
6.4.3	Numerische Lösung, semi-implizites Verfahren —— 193
6.4.4	Aufgaben —— 194
7	Partielle Differentialgleichungen II, Anwendungen —— 197
7.1	Quantenmechanik in einer Dimension —— 197
7.1.1	Stationäre Zweiteilchengleichung —— 197
7.1.2	Zeitabhängige Schrödinger-Gleichung — 200
7.2	Quantenmechanik in zwei Dimensionen —— 206
7.2.1	Schrödinger-Gleichung — 206
7.2.2	Algorithmus —— 207
7.2.3	Auswertung —— 207
7.3	Hydrodynamik inkompressibler Strömungen —— 208
7.3.1	Grundgleichungen —— 208
7.3.2	Beispiel: Driven Cavity —— 211
7.3.3	Thermische Konvektion: (A) quadratische Geometrie —— 215
7.3.4	Thermische Konvektion: (B) Rayleigh-Bénard-Konvektion —— 221
7.4	Strukturbildung fern vom Gleichgewicht —— 228
7.4.1	Reaktions-Diffusions-Systeme —— 228
7.4.2	Swift-Hohenberg-Gleichung —— 236
7.4.3	Aufgaben —— 240
8	Monte Carlo-Verfahren (MC) —— 243
8.1	Zufallszahlen und Verteilungen —— 243
8.1.1	Zufallszahlengenerator —— 243
8.1.2	Verteilungsfunktion, Wahrscheinlichkeitsdichte,
	Erwartungswert —— 244
8.1.3	Andere Verteilungsfunktionen —— 245
8.2	Monte Carlo-Integration —— 249
8.2.1	Integrale in einer Dimension —— 249
8.2.2	Integrale in mehreren Dimensionen —— 251
8.3	Anwendungen aus der Statistischen Physik —— 253
8.3.1	Zweidimensionales klassisches Gas —— 254
8.3.2	Das Ising-Modell —— 259

8.4	Differentialgleichungen als Variationsproblem — 269
8.4.1	Diffusionsgleichung —— 269
8.4.2	Swift-Hohenberg-Gleichung —— 271
A	Matrizen und lineare Gleichungssysteme —— 275
A.1	Reelle Matrizen —— 275
A.1.1	Eigenwerte und Eigenvektoren — 275
A.1.2	Charakteristisches Polynom —— 275
A.1.3	Bezeichnungen —— 276
A.1.4	Normale Matrizen —— 276
A.2	Komplexe Matrizen —— 277
A.2.1	Bezeichnungen —— 277
A.2.2	Die Jordan'sche Normalform 278
A.3	Inhomogene lineare Gleichungssysteme —— 279
A.3.1	Reguläre und singuläre Systemmatrizen — 279
A.3.2	Fredholm'sche Alternative —— 280
A.3.3	Reguläre Matrizen —— 280
A.3.4	LR-Zerlegung —— 281
A.3.5	Thomas-Algorithmus —— 283
A.4	Homogene lineare Gleichungssysteme —— 284
A.4.1	Eigenwertproblem —— 284
A.4.2	Problemstellung —— 285
A.4.3	Anwendung: Nullstellen eines Polynoms —— 287
В	Programm-Library —— 289
B.1	Routinen —— 289
B.2	Grafik —— 290
B.2.1	init 290
B.2.2	contur —— 290
B.2.3	contur1 —— 290
B.2.4	ccontu —— 290
B.2.5	image —— 291
B.2.6	ccircl —— 291
B.3	Runge–Kutta —— 291
B.3.1	rkg —— 291
B.3.2	drkg 291
B.3.3	drkadt 291
B.4	Sonstiges —— 292
B.4.1	tridag – Thomas-Algorithmus —— 292
B.4.2	ctrida —— 292
B.4.3	dlyap_exp - Lyapunov-Exponenten 292
B.4.4	schmid – Orthogonalisierung —— 293

~			
X	-	Inha	lt

B.4.5	FUNCTION volum – volumen in <i>n</i> dimensionen —— 293
B.4.6	FUNCTION deter – Determinante —— 293
B.4.7	random_init – Zufallszahlen —— 293
_	
C	Lösungen der Aufgaben —— 295
C.1	Kapitel 1 —— 295
C.2	Kapitel 2 296
C.3	Kapitel 3 —— 297
C.4	Kapitel 4 —— 297
C.5	Kapitel 5 —— 303
C.6	Kapitel 6 —— 306
C.7	Kapitel 7 —— 308
_	DEADAGE and Managed Street FF Deadage and 242
_	README und Kurzanleitung FE-Programme —— 313
D.1	README 313
D.2	Kurzanleitung für Finite-Elemente-Programme (Kap. 6) —— 316
D.2.1	gitter_generator —— 317
D.2.2	laplace_solver 317
D.2.3	gitter_contur 318
D.2.4	Was könnte besser werden? —— 318
	B.4.6 B.4.7 C C.1 C.2 C.3 C.4 C.5 C.6 C.7 D D.1 D.2 D.2.1 D.2.2

Stichwortverzeichnis — 319