Contents

1	Reli	ability	engineering in power electronic converter systems	1		
	1.1	Perfor	mance factors of power electronic systems	1		
		1.1.1	Power electronic converter systems	1		
		1.1.2	Design objectives for power electronic converters	3		
		1.1.3	Reliability requirements in typical power			
			electronic applications	4		
	1.2	Reliat	bility engineering in power electronics	6		
		1.2.1	Key terms and metrics in reliability engineering	6		
		1.2.2	Historical development of power electronics and reliability			
			engineering	11		
		1.2.3	Physics of failure of power electronic components	15		
		1.2.4	DFR of power electronic converter systems	17		
		1.2.5	Accelerated testing concepts in reliability engineering	20		
		1.2.6	Strategies to improve the reliability of power			
			electronic converter systems	23		
	1.3	Challenges and opportunities in research on power electronics				
		reliability				
		1.3.1	Challenges in power electronics reliability research	25		
		1.3.2	Opportunities in power electronics reliability research	25		
	Refe	erences		26		
2	Ano	maly d	letection and remaining life prediction for			
	pow	er elec	tronics	31		
	References Anomaly detection and remaining life prediction for power electronics 2.1 Introduction 2.2 Failure models 2.2.1 Time-dependent dielectric breakdown models					
	2.2	Failur	e models	32		
		2.2.1	Time-dependent dielectric breakdown models	33		
		2.2.2	Energy-based models	34		
		2.2.3	Thermal cycling models	35		
	2.3	FMM	EA to identify failure mechanisms	36		
	2.4	Data-	driven methods for life prediction	39		
		2.4.1	The variable reduction method	40		
		2.4.2	Define failure threshold by Mahalanobis distance	42		
		2.4.3	K-nearest neighbor classification	46		
		2.4.4	Remaining life estimation-based particle filter parameter	48		

		2.4.5	Data-driven anomaly detection and prognostics for	
			electronic circuits	51
		2.4.6	Canary methods for anomaly detection and prognostics for	
		_	electronic circuits	52
	2.5	Summ	hary	53
	Ack	nowled	gements	53
	Refe	erences		53
3	Reli	ability	of DC-link capacitors in power electronic converters	59
	3.1	Capac	eitors for DC-links in power electronic converters	59
		3.1.1	The type of capacitors used for DC-links	59
		3.1.2	Comparison of different types of capacitors for DC-links	60
		3.1.3	Reliability challenges for capacitors in power electronic	~
		T 1	converters	63
	3.2	Failur	E mechanisms and lifetime models of capacitors	64
		3.2.1	Failure modes, failure mechanisms, and	
		222	Lifetime models of DC-link capacitors	64
		3.2.2	Applemented lifetime testing of DC link capacitors	00
		3.2.3	Accelerated filetime testing of DC-link capacitors	60
	2 2	Daliah	under number conditions	60
	5.5	2 2 1	Six types of consolitive DC link design solutions	70
		3.3.1	A reliability oriented design procedure of	70
		3.3.2	capacitive DC-links	72
	34	Condi	tion monitoring of DC-link canacitors	75
	D.4 Refe	rences	tion momenting of De-mik capacitors	75
	Reit	i chees		//
4	Reli	ability	of power electronic packaging	83
	4.1	Introd	uction	83
	4.2	Reliat	bility concepts for power electronic packaging	84
	4.3	Reliat	bility testing for power electronic packaging	85
		4.3.1	Thermal shock testing	86
		4.3.2	Temperature cycling	86
		4.3.3	Power cycling test	87
		4.3.4	Autoclave	88
		4.3.5	Gate dielectric reliability test	88
		4.3.6	Highly accelerated stress test	89
		4.3.7	High-temperature storage life (HSTL) test	89
		4.3.8	Burn-in test	89
		4.3.9	Other tests	90
	4.4	Power	semiconductor package or module reliability	90
		4.4.1	Solder joint reliability	91
		4.4.2	Bond wire reliability	91
	4.5	Reliat	bility of high-temperature power electronic modules	94
		4.5.1	Power substrate	95

A	
Contents	V11
Comenis	¥ 1 1

141

	4.5.2	High-temperature die attach reliability	96
	4.5.3	Die top surface electrical interconnection	97
	4.5.4	Encapsulation	98
4.	.6 Sumi	mary	99
A	cknowled	dgements	99
R	eferences	5	99
5 N	1odelling	g for the lifetime prediction of power	

			102	
semiconductor modules				
5.1	Accele	erated cycling tests	105	
5.2	Dominant failure mechanisms			
5.3	Lifetir	ne modelling	108	
	5.3.1	Thermal modelling	108	
	5.3.2	Empirical lifetime models	110	
	5.3.3	Physics-based lifetime models	112	
	5.3.4	Lifetime prediction based on PC lifetime models	117	
5.4	Physic	es-based lifetime estimation of solder joints within		
	power	semiconductor modules	118	
	5.4.1	Stress-strain (hysteresis) solder behaviour	119	
	5.4.2	Constitutive solder equations	121	
	5.4.3	Clech's algorithm	123	
	5.4.4	Energy-based lifetime modelling	123	
5.5	Exam	ple of physics-based lifetime modelling for solder joints	124	
	5.5.1	Thermal simulation	125	
	5.5.2	Stress-strain modelling	127	
	5.5.3	Stress-strain analysis	129	
	5.5.4	Model verification	130	
	5.5.5	Lifetime curves extraction	132	
	5.5.6	Model accuracy and parameter sensitivity	133	
	5.5.7	Lifetime estimation tool	135	
5.6	Concl	usions	136	
Ack	nowled	gements	136	
Refe	erences	_	137	

6 Minimization of DC-link capacitance in power electronic converter systems 6.1 Introduction

1

	· • · · · · · · · · · · · · · · · · · ·	
6.1	Introduction	141
6.2	Performance tradeoff	143
6.3	Passive approach	145
	6.3.1 Passive filtering techniques	145
	6.3.2 Ripple cancellation techniques	146
6.4	Active approach	147
	6.4.1 Power decoupling techniques	147
	6.4.2 Ripple cancellation techniques	154

		6.4.3	Control and modulation techniques	155
		6.4.4	Specialized circuit structures	156
	6.5	Conclu	usions	157
	Ack	nowledg	gement	157
	Refe	rences		157
7	Win	d turbi	ine systems	165
	7.1	Introd	uction	165
	7.2	Review	w of main WT power electronic architectures	165
		7.2.1	Onshore and offshore	165
	7.3	Public	domain knowledge of power electronic converter	
		reliabi	lities	171
		7.3.1	Architecture reliability	171
		7.3.2	SCADA data	174
		7.3.3	Converter reliability	176
	7.4	Reliab	bility FMEA for each assembly and comparative	
		prospe	ective reliabilities	180
		7.4.1	Introduction	180
		7.4.2	Assemblies	181
		7.4.3	Summary	181
	7.5	Root o	causes of failure	186
	7.6	Metho	ds to improve WT converter reliability and availability	187
		7.6.1	Architecture	18/
		7.6.2	I hermal management	107
		7.0.3	Control	10/
	77	7.0.4 Comol	Monitoring	100
	7.1	Decor	usions	100
	7.0 A ala	nowled	amenta	180
	Torr	ninolog	gements	189
	Abb	reviatio	y Nns	102
	Vari	ables	115	192
	Refe	erences		193
0	Act	we then	mal control for improved reliability of newer	
0	Acu	tropics	systems	105
	8 1	Introd	uction	195
	0.1	811	Thermal stress and reliability of nower electronics	195
		812	Concept of active thermal control for improved reliability	198
	82	Modu	lation strategies achieving better thermal loading	199
	0.2	8.2.1	Impacts of modulation strategies on thermal stress	199
		8.2.2	Modulations under normal conditions	200
		8.2.3	Modulations under fault conditions	202
	8.3	React	ive power control achieving better thermal cycling	204
		8.3.1	Impacts of reactive power	204

		8.3.2 Case study on the DFIG-based wind turbine system	206
		8.3.3 Study case in the paralleled converters	210
	8.4	Thermal control strategies utilizing active power	212
		8.4.1 Impacts of active power to the thermal stress	212
		8.4.2 Energy storage in large-scale wind power converters	214
	8.5	Conclusions	217
	Ack	nowledgements	217
	Ref	erences	218
9	Lifet	ime modeling and prediction of power devices	223
	9.1	Introduction	223
	9.2	Failure mechanisms of power modules	225
		9.2.1 Package-related mechanisms	225
		9.2.2 Burnout failures	227
	9.3	Lifetime metrology	229
		9.3.1 Lifetime and availability	229
		9.3.2 Exponential distribution	230
		9.3.3 Weibull distribution	231
	0.4	9.3.4 Redundancy	232
	9.4	Lifetime modeling and design of components	233
		9.4.1 Lifetime prediction based on mission profiles	233
		9.4.2 Modeling the metime of systems with constant	224
		0.4.3 Modeling the lifetime of systems submitted to	234
		low-cycle fatigue	226
	9.5	Summary and conclusions	230
	Ack	nowledgements	241
	Refe	erences	242
			272
10	Powe	er module lifetime test and state monitoring	245
	10.1	Overview of power cycling methods	245
	10.2	AC current PC	246
		10.2.1 Introduction	246
	10.2	10.2.2 Stressors in AC PC	247
	10.3	Wear-out status of PMs	249
		10.3.1 On-state voltage measurement method	250
		10.3.2 Current measurement	253
	10.4	Voltage evolution in ICPT and diade	254
	10.4	10.4.1 Application of u monitoring	250
		$10.4.1$ Application of $\theta_{ce,on}$ monitoring $10.4.2$ Degradation and failure mechanisms	259
		10.4.3 Post-mortem investigation	200
	10.5	Chin temperature estimation	202
	10.5	10.5.1 Introduction	202
		10.5.2 Overview of junction temperature estimation methods	202
		solor of other of junction temperature estimation methods	204

		10.5.3	$v_{cr,or}$ -load current method	265
		10.5.4	Estimating temperature in converter operation	267
		10.5.5	Temperature measurement using direct method	270
		10.5.6	Estimated temperature evaluation	274
	10.6	Process	ing of state monitoring data	277
	10.0	10.6.1	Basic types of state data handling	278
		10.6.2	Application of state monitoring	281
	10.7	Conclus	sion	283
	Ackn	owledge	ment	283
	Refer	ences		283
		enees		200
11	Stoch	astic hy	brid systems models for performance and	
	reliat	oility and	alysis of power electronic systems	287
	11.1	Introdu	ction	287
	11.2	Fundan	nentals of SHS	289
		11.2.1	Evolution of continuous and discrete states	289
		11.2.2	Test functions, extended generator, and	
			moment evolution	290
		11.2.3	Evolution of the dynamic-state moments	291
		11.2.4	Leveraging continuous-state moments for dynamic	
			risk assessment	292
		11.2.5	Recovering Markov reliability and reward models	
			from SHS	293
	11.3	Applica	ation of SHS to PV system economics	295
	11.4	Conclu	ding remarks	299
	Ackn	owledge	ments	299
	Refer	ences		299
12	Fault	-toleran	t adjustable sneed drive systems	303
	12.1	Introdu	ction	303
	12.2	Factors	affecting ASD reliability	304
		12.2.1	Power semiconductor devices	305
		12.2.2	Electrolytic capacitors	305
		12.2.3	Other auxiliary factors	305
	12.3	Fault-to	blerant ASD system	306
	12.4	Conver	ter fault isolation stage in fault-tolerant system design	307
	12.5	Control	or hardware reconfiguration stage in fault-tolerant	507
	~	system	design	308
		12.5.1	Topological techniques	311
		12.5.2	Software techniques	318
		12.5.3	Redundant hardware techniques	328
	12.6	Conchu	sion	340
	Ackn	owledge	ments	348
	Refer	ences		348
				2.0

13	Miss	Mission profile-oriented reliability design in wind turbine and				
	photovoltaic systems					
	13.1	Mission profile for renewable energy systems	355			
		13.1.1 Operational environment	355			
		13.1.2 Grid demands	357			
	13.2	Mission-profile-oriented reliability assessment	362			
		13.2.1 Importance of thermal stress	363			
		13.2.2 Lifetime model of power semiconductor	363			
		13.2.3 Loading translation at various time scales	365			
		13.2.4 Lifetime estimation approach	366			
	13.3	Reliability assessment of wind turbine systems	367			
		13.3.1 Lifetime estimation for wind power converter	368			
		13.3.2 Mission profile effects on lifetime	372			
	13.4	Reliability assessment of PV system	373			
		13.4.1 PV inverter candidates	374			
		13.4.2 Reliability assessment of single-phase PV systems	378			
		13.4.3 Thermal-optimized operation of PV systems	383			
	13.5	Summary	385			
	Ackn	owledgements	386			
	Refer	rences	386			
14	Relia	bility of power conversion systems in photovoltaic				
	appli	cations	391			
	14.1	Introduction to photovoltaic power systems	391			
		14.1.1 DC/DC conversion	391			
		14.1.2 DC/AC conversion	394			
	14.2	Power conversion reliability in PV applications	396			
		14.2.1 Capacitors	397			
		14.2.2 IGBTs/MOSFETs	399			
	14.3	Future reliability concerns	403			
		14.3.1 Advanced inverter functionalities	404			
		14.3.2 Large DC/AC ratios	409			
		14.3.3 Module-level power electronics	411			
	Ackn	owledgements	414			
	Refer	ences	414			
15	Relia	bility of power supplies for computers	423			
	15.1	Purpose and requirements	423			
		15.1.1 Design failure modes and effects analysis	424			
	15.2	Thermal profile analysis	428			
	15.3	De-rating analysis	431			
	15.4	Capacitor life analysis	433			
		15.4.1 Aluminum electrolytic capacitors	434			
		15.4.2 Os-con type capacitors	435			

	15.5	Fan life	2	435
	15.6	High ac	ccelerated life test	438
		15.6.1	Low temperature stress	440
		15.6.2	High temperature stress	441
		15.6.3	Vibration stress	441
		15.6.4	Combined temperature-vibration stress	443
	15.7	Vibrati	on, shock, and drop test	444
		15.7.1	Vibration test	444
		15.7.2	Shock and drop test	445
	15.8	Manufa	acturing conformance testing	445
		15.8.1	The ongoing reliability testing	446
	15.9	Conclu	sions	448
	Ackn	owledge	ment	448
	Refer	ences		448
16	High-power converters			
	16.1	High-p	ower applications	451
		16.1.1	General overview	451
	16.2	Thyrist	or-based high-power devices	452
		16.2.1	Integrated gate-commutated thyristor (IGCT)	453
		16.2.2	Internally-commutated thyristor (ICT)	455
		16.2.3	Dual-ICT	455
		16.2.4	ETO/IETO	457
		16.2.5	Reliability of thyristor-based devices	458
	16.3	High-p	ower inverter topologies	459
		16.3.1	Two-level converters	459
		16.3.2	Multi-level converters	460
	16.4	High-p	ower dc-dc converter topologies	464
		16.4.1	DAB converter	464
		16.4.2	Modular dc-dc converter system	469
	Refer	rences		471

Index

475