Contents

Sy	Symbols				
1	Intr	Introduction			
	1.1	Obser	rvations	1	
		1.1.1	Microscopic and macroscopic properties of solids	1	
		1.1.2	Physical characteristics of crystals	1	
			Physical properties of crystals	2	
			Thermodynamic properties of crystals	8	
			So what do some simple observations tell us?	10	
	1.2	Lengt	h scales and time scales	12	
	1.3	Tools	of the trade	13	
		1.3.1	Theoretical and mathematical tools	13	
		1.3.2	Experimental tools	15	
		1.3.3	Special tools and concepts for the study of the structure		
			and dynamics of crystals	16	
		Sumn	nary of chapter	17	
		Furthe	er reading for Chapter 1	17	
2	Stru	icture	of materials	18	
	2.1	Introd	luction	18	
	2.2	Crysta	al structures of the elements	19	
		2.2.1	Close-packed metals	19	
		2.2.2	Body-centred cubic packing	25	
		2.2.3	Simple cubic packing	25	
		2.2.4	Crystal structures of elements with covalent bonding	26	
		2.2.5	Diatomic molecular structures and other molecular		
			elements	27	
		2.2.6	Summary of the structures of the elements	29	
	2.3	Crysta	al structures of some simple inorganic compounds	29	
		2.3.1	Diatomic compounds	29	
		2.3.2	Ionic packing	31	
		2.3.3	Crystals with general formula AX_m , and the general idea		
			of coordination polyhedra	32	
	2.4	-	erovskite family of crystal structures	35	
		2.4.1	1	35	
			Ferroelectric phase transitions in perovskites	37	
			Rotational phase transitions	38	
			Effects of chemical variation	39	
		2.4.5	Variations on the perovskite theme	40	

	2.5	Organ	nic crystals	40
		-	dered materials	41
		2.6.1	The importance of structural disorder	41
		2.6.2	Orientational disorder in molecular crystals	41
		2.6.3	Orientational disorder in framework structures	42
		2.6.4	Fast-ion conductors	43
		2.6.5	Liquid crystals	43
	2.7		es and amorphous phases	44
		2.7.1		44
		2.7.2	Quantifying short-range order	45
			Amorphous and crystalline phases of silica	47
	2.8	Concl	usions	48
		Summ	nary of chapter	49
		Furthe	er reading	50
		Exerc	ises	50
3	For	mal de	scription of crystal structures	52
		Introd		52
	3.2	Crysta	al structure: lattices, unit cell, and atomic coordinates	53
			Definition of the crystal lattice	53
		3.2.2	The unit cell	54
		3.2.3	Lattices, lattice parameters, and symmetry: the seven	
			crystal systems	54
			Volume of the unit cell	56
		3.2.5	•	
			lattices	56
			Atomic coordinates	57
		3.2.7	Crystal structure as the convolution of the lattice and the	50
	2.2	C	atomic basis	58
	3.3		al symmetry 1. Point-symmetry operations	61
		3.3.1	5 5	61
		3.3.2		61
		3.3.3	5 5 1	64
	24	3.3.4	, , , , , , , , , , , , , , , , , , , ,	65
	3.4		cation of the formalism of point groups	66
		3.4.1		66
	25	3.4.2		68
	3.5	3.5.1	al symmetry 2. Translational symmetry and space groups Translational symmetry	70
		3.5.2		70
	26			72
	3.6		ing the rules: aperiodic structures, incommensurate ials, and quasicrystals	72
		3.6.1		73
			Quasicrystals	73
			nary of chapter	74
			er reading	74
		Fulue	•	75

4	The	recipr	ocal lattice	78
	4.1	The c	oncept of the reciprocal lattice	78
	4.2	Defini	itions	79
		4.2.1	Geometry of the reciprocal lattice and its link to the	
			crystal lattice	80
		4.2.2	Relationship between real and reciprocal lattice	
			parameters	81
		4.2.3	Interplanar spacing and the reciprocal lattice parameters	82
		4.2.4	Reciprocal lattice vectors and atomic structure	82
	4.3	Non-p	primitive lattices	82
		4.3.1	Some general principles and practical methods	82
		4.3.2		
			and fcc lattices	85
	4.4		ciprocal lattice as the Fourier transform of the crystal lattice	86
	4.5	-	rocal space and the Brillouin zone	87
			ary of chapter	89
			er reading	90
		Exerci	ses	90
5	Ato	nic ho	nding in crystals	91
5	5.1		ng and the variety of crystal structures	91
	5.2		nodynamic preamble: the context of the binding energy	91
	5.3		e energy	94
	5.4		ls of bonding	96
	5.4	5.4.1	Coulomb energy	96
			Repulsive interactions	98
		5.4.3	-	70
		51115	example of alkali halides	98
		5.4.4	Dispersive interactions: binding in molecular crystals	99
			Shell models	100
		5.4.6	Hydrogen bonds	101
		5.4.7	Empirical representations of covalent and metallic	
			bonding	102
	5.5	Quant	um mechanical view of chemical bonding	105
		5.5.1	The need to take a proper quantum-mechanical view	105
		5.5.2	Born-Oppenheimer approximation	106
		5.5.3	Bloch's theorem for electrons in a periodic structure	106
		5.5.4	Simple view of bonding in molecules	107
		5.5.5	Tight-binding methods	108
		5.5.6	Electron-electron interactions: Hartree-Fock and beyond	110
		5.5.7	Representation of electronic wave functions	112
		5.5.8	Practical calculations of binding energies from quantum	
			mechanics	114
		Summ	ary of chapter	114
			r reading	115
		Exerci	ses	115

6	Diff	ractior	1	117
	6.1	Basics	s of diffraction	117
		6.1.1	Use of radiation beams	117
		6.1.2	Bragg's law	118
		6.1.3	Single-crystal and powder diffraction measurements	118
		6.1.4	Diffraction and crystal structures	119
	6.2	Beam	s of radiation and measurement of diffraction patterns	119
		6.2.1	Laboratory X-ray methods	119
		6.2.2	Measurement of the intensity of scattered X-ray beams	120
		6.2.3	Synchrotron X-ray sources	122
		6.2.4	Neutron beams	123
		6.2.5	Comparison of the characteristics of X-ray and neutron	
			beams	126
			Beams of electrons	129
	6.3		s of the theory of diffraction	129
			The wave equation	129
			Scattering of radiation from two particles	130
			Scattering of radiation from a collection of particles	132
	6.4		ring of radiation from a continuous distribution of	
		partic		133
			General principle	133
			X-ray atomic scattering factor	133
			Neutron scattering factors	134
	6.5		ction and Fourier analysis	134
		6.5.1	or or	134
			Fourier transforms and convolution	135
	6.6		cation: the structure of glasses revealed by neutron	120
		scatte	-	136
	6.7		action from crystalline materials	138
			Fourier transform of the perfect crystal	138
			The effect of particle size on the diffraction pattern	140
		6.7.3	The inverse transform: obtaining the electron	
			density from X-ray diffraction measurements of the structure factor	140
		6.7.4		140
	6.8		ts of symmetry on diffraction patterns	142
	0.0	6.8.1	Friedel's law	142
			Point symmetry of diffraction patterns	144
		6.8.3		145
			Systematic absences	145
			Determination of space-group symmetry	147
	6.9		ion of the phase problem and determination of crystal	
		struct	• • •	149
		6.9.1		149
		6.9.2	Historical review of attempts to bypass the phase	
			problem	149
		6.9.3	Direct methods to overcome the phase problem	150
		6.9.4	Refinement of the crystal structure	151

		Summ	hary of chapter	152
			er reading	153
		Exerc	-	154
?	Phy	sical p	roperties	156
	7.1	Overv	liew	156
		7.1.1	Crystal anisotropy	156
		7.1.2	An introduction to tensors	157
		7.1.3	Field and matter tensors	158
	7.2	First-r	rank tensors	158
	7.3	Secon	d-rank tensors	158
		7.3.1	Basic ideas	158
		7.3.2	Stress as a second-rank tensor	160
		7.3.3	Strain as a second-rank tensor	160
		7.3.4	45° rotation of the strain tensor and the conversion	
			between tensile and shear strain	161
		7.3.5	Voigt notation	162
		7.3.6	Principal axes	163
		7.3.7	Symmetry and second-rank matter tensors	164
		7.3.8	Example of zero thermal expansion	164
	7.4	Third-	rank tensors	165
		7.4.1	Piezoelectricity	165
		7.4.2	Use of Voigt notation for third-rank tensors	169
		7.4.3	Transformations of third-rank tensors	169
	7.5	Fourth	n-rank tensors	171
		7.5.1	A hierachy of higher-order tensors	171
		7.5.2	The elasticity tensors	171
	7.6	Induce	ed changes in matter tensors	172
		7.6.1	Basic ideas	172
		7.6.2	Refractive index, the electro-optic effect, and the	
			photoelastic effect	172
		Summ	nary of chapter	173
		Furthe	er reading	173
		Exerci	ises	173
8		-	namics	175
	8.1		to we need to consider dynamics?	175
	8.2		armonic approximation	175
	8.3		e vibrations of one-dimensional monatomic crystals	176
		8.3.1	The linear chain model	176
		8.3.2	Sound waves - vibrations with long wavelengths	177
		8.3.3 8.3.4	Vibrations with shorter wavelengths: general features Vibrations with shorter wavelengths: the special case of	178
		0 0 7	$\lambda = 2a$	178
		8.3.5 8.3.6	Vibrations with shorter wavelengths: the general case Extension of model of monatomic chain to include	179
		8.3.7	distant neighbours Reciprocal lattice, the Brillouin zone, and allowed	180
			wave vectors	181

		8.3.8	Three-dimensional monatomic crystals:	
			general principles	182
	8.4	Dispe	rsion curves in face-centred cubic materials	183
		8.4.1	Dispersion curves of neon	183
		8.4.2	Dispersion curves of lead	187
		8.4.3	Dispersion curves of potassium	1 87
	8.5	Lattic	e vibrations of crystals with several atoms in the unit cell	1 89
		8.5.1	The basic model	1 89
		8.5.2	Solution for small wave vector	190
		8.5.3	General result	192
			Generalization for more complex cases: atomic motions	193
		8.5.5	Generalization for more complex cases:	
			the dynamical matrix	194
			Lattice dynamics of ionic crystals	196
			The lattice dynamics of the alkali halides	197
			The lattice dynamics of quartz	198
			nary of chapter	199
			er reading	200
		Exerc	ISES	200
9	ТЬо	rmodv	namics and lattice dynamics	202
,		-	uantization of lattice vibrations	202
	7.1	-	Phonons: the quanta of harmonic lattice vibrations	202
			The Bose–Einstein relation, $n(\omega, T)$	203
			High-temperature behaviour	204
			Heat capacity	204
			Phonon free energy and entropy	205
	9.2		nodynamic functions for crystals	206
		9.2.1	Thermodynamic functions	206
		9.2.2	The Einstein model	206
		9.2.3	Density of states	207
		9.2.4	Density of states for acoustic modes	207
		9.2.5	Debye model of heat capacity	208
		9.2.6	Example of thermodynamic functions of fluorite, CaF ₂	209
	9.3	Atomi	c displacements	211
		9.3.1	Normal mode coordinates	211
			Vibrational energy and amplitude	211
			Recasting the crystal Hamiltonian	212
			ary of chapter	213
			er reading	214
		Exerci	ises	214
10	Evn	erimer	ntal methods for measurements of vibrational	
10	-	uencie		216
	-	Introd		216
			ideas of spectroscopy	217
			on scattering techniques	219
			Neutrons for spectroscopic measurements	219

		10.3.2 Neutron scattering experimental methods: the triple-axis	
		spectrometer	219
		10.3.3 General formalism of neutron scattering	222
		10.3.4 Applications of neutron inelastic scattering	226
		Inelastic X-ray scattering	228
	10.5	Light scattering	228
		10.5.1 Basic idea of Raman scattering	228
		10.5.2 Mechanism of Raman scattering	229
		10.5.3 Applications of Raman spectroscopy	230
		10.5.4 Brillouin scattering	231
	10.6	Infrared absorption spectroscopy	231
		Summary of chapter	233
		Further reading	234
		Exercises	234
11	Anh	armonic interactions	236
		Introduction	236
		Thermal conductivity	239
		Thermal expansion	241
		11.3.1 Theory	241
		11.3.2 Example: calculation of thermal expansion in	
		fluorite	243
	11.4	Temperature dependence of phonon frequencies	244
		Summary of chapter	245
		Further reading	246
		Exercises	246
12	Disn	lacive phase transitions	247
	-	Introduction to displacive phase transitions	247
	. 2	12.1.1 Importance of thermodynamic analysis	249
		12.1.2 Various types of displacive phase transitions	250
	12.2	Quantitative description of displacive phase transitions:	-200
		the concept of the order parameter	252
		12.2.1 The general definition of the order parameter	252
		12.2.2 Examples of order parameters for specific phase	
		transitions	254
		12.2.3 Order parameters in other phase transitions	255
		12.2.4 Experimental measurements of order parameter	255
		12.2.5 First- and second-order phase transitions	256
	12.3	Landau theory of displacive phase transitions	258
		12.3.1 Qualitative behaviour of the free energy	258
		12.3.2 Expansion of the free energy function for a second-order	
		phase transition	259
		12.3.3 Calculation of properties for a second-order phase	
		transition	259
		12.3.4 First-order phase transitions	261
		12.3.5 The range of validity of Landau theory	262
	12.4	Soft mode theory of displacive phase transitions	263
		12.4.1 Basic idea of the soft mode	263

	1242 Earroalactric coft modes	264
	12.4.2 Ferroelectric soft modes	264
	12.4.3 Zone boundary (antiferroelectric) phase transitions	265
	12.4.4 Ferroelastic phase transitions 12.4.5 Incommensurate phase transitions	266
12	-	260
12.	5 Lattice dynamical theory of the low-temperature phase 12.5.1 Lattice dynamical theories	267
	12.5.1 Lattice dynamical theories 12.5.2 Potential energy of the crystal	267
	12.5.2 Potential energy 12.5.3 Phonon free energy	267
	12.5.4 Full free energy and the Landau free energy	200
	function	269
	12.5.5 Low-temperature behaviour	269
	Summary of chapter	270
	Further reading	272
	Exercises	272
A Re	al crystals!	274
A .]	Reality against ideality	274
A.2	Point defects	275
	A.2.1 Vacancies: Schottky defects	275
	A.2.2 Interstitial defects: Frenkel defects	276
	A.2.3 Coupled charge substitutions and vacancies	276
	A.2.4 Colour centres	276
	A.2.5 Diffusion and atomic mobility	276
A.3	Large-scale imperfections	277
	A.3.1 Dislocations	277
	A.3.2 Grain boundaries	277
	A.3.3 Domains and domain walls	278
	A.3.4 Surfaces and surface reconstructions	278
	Summary of appendix	279
	Further reading	279
B Fo	ırier analysis	280
B.1	Fourier transforms as the extension of Fourier series	280
B.2	One-dimensional Fourier transform	280
B .3	Some one-dimensional Fourier transforms	281
	B.3.1 Dirac δ function	281
	B.3.2 Slit function	281
	B.3.3 Symmetric exponential function	281
	B.3.4 Gaussian function	282
B .4	Convolution theorem	282
	Summary of appendix	283
	Further reading	283
	noenflies representation of the point groups	284
	The Schoenflies and International systems	284
	Schoenflies labelling of non-cubic point groups	284
C.3	Schoenflies labelling of the cubic point groups	285
	Summary of appendix	285
	Further reading	285

D	Summary of appendix	286 286 286
Е	 E.1 Space group symbols E.2 Defining symmetry E.3 General and special positions E.4 The International Tables of Crystallography E.5 Relating general equivalent positions to actual atomic positions Summary of appendix 	287 287 288 289 290 290 291 291
F		292 292
G	Summary of appendix	293 294 294
н	Summary of appendix	295 297 297
I	Summary of appendix	298 299 299
J	 J.1 Basic diffraction equations J.2 Isotropic orientational averages J.3 Pair distribution functions J.4 Reverse Fourier transform J.5 General approach to analysis of diffraction data Summary of appendix 	300 300 300 301 302 303 303 303
К	 K.1 Expansion of the crystal energy K.2 Equilibrium condition and the elastic constant tensor K.3 Piezoelectric and dielectric tensors Summary of appendix 	304 304 304 305 306 306
L	L.1 The definition and use of the partition functionL.2 The free energyL.3 Some results	307 307 307 308 308

	L.3.2 Susceptibility	308
	Summary of appendix	309
	Further reading	309
М	Lattice sums	310
	Summary of appendix	310
	Further reading	310
N	Mean-square atomic displacement and temperature factors	311
	Summary of appendix	313
	Further reading	313
Sol	lutions to exercises	314
Re	ferences	326
Inc	lex	331