Contents

1	State of the Art of Microreaction Technology	1
1.1	Definition	
1.1.1	Microsystems Termed Microreactor	1
1.1.2	Structural Hierarchy of Microreactors	1
1.1.3	Functional Classification of Microreactors	4
1.1.4	Dividing Line Between Analysis and Reaction Systems	
1.2	Fundamental Advantages of Microreactors	5
1.2.1	Fundamental Advantages of Miniaturized Analysis Systems	
1.2.2	Fundamental Advantages of Nano-Scale Reactors	5
1.2.3	Advantages of Microreactors Due to Decrease of Physical Size	6
1.2.4	Advantages of Microreactors Due to Increase of Number of Units	8
1.3	Potential Benefits of Microreactors Regarding Applications	. 10
1.4	References	. 12
2	Modern Microfabrication Techniques for Microreactors	. 15
2.1	Microfabrication Techniques Suitable for Microreactor Realization	
2.2	Evaluation of Suitability of a Technique	. 16
2.3	Anisotropic Wet Etching of Silicon	. 17
2.4	Dry Etching of Silicon	. 19
2.5	LIGA Process	. 20
2.6	Injection Molding	. 21
2.7	Wet Chemical Etching of Glass	. 22
2.8	Advanced Mechanical Techniques	. 23
2.8.1	Surface Cutting with Diamond Tools	. 23
2.8.2	Milling, Turning and Drilling	. 23
2.8.3	Punching	. 24
2.8.4	Embossing	. 24
2.9	Isotropic Wet Chemical Etching of Metal Foils	. 25
2.10	Electro Discharge Machining (EDM) of Conductive Materials	. 26
2.10.1	Wire-Cut Erosion and Die Sinking	. 27
2.10.2	μ-EDM Drilling	. 29
2.11	Laser Micromachining	. 29
2.12	Interconnection Techniques	
2.12.1	Microlamination of Thin Metal Sheets	. 30
2.13	Functional Coatings	
2.13.1	Functional Coatings for Corrosion Prevention	
2.13.2	Functional Coatings for Fouling Prevention	
2.14	References	. 35

3	Micromixers	41
3.1	. Mathematical and Classes of Macrosconic Mixing Equipment	41
3.2	Mixing Principles and Classes of Miniaturized Mixers	··· 47
3.3	D tout 1 of Ministurized Mivers	40
3.4	Contacting of Two Substreams, e.g. in a Mixing Tee Configuration	49
3.4.1	Mixing Tee-Type Configuration	47
3.4.2	Double Mixing Tee-Type Configuration	30
3.5	Collision of High-Energy Substreams for Spraying/Atomizing	52
3.5.1	Collision of Three Substreams in a Microjet Reactor	52
3.6	Injection of Many Small Substreams of One Component into a	
	Main Stream of Another Component	53
3.6.1	Injection of Multiple Microjets	53
3.7	Manifold Splitting and Recombination of a Stream Consisting of	
	Two Fluid Lamellae of Both Components	55
3.7.1	Multiple Flow Splitting and Recombination Combined with Channel	
	Reshaping	55
3.7.2	Multiple Flow Splitting and Recombination Using Fork-Like Elements	58
3.7.3	Multiple Flow Splitting and Recombination Using a Separation Plate	60
3.7.4	Multiple Flow Splitting and Recombination Using a Ramp-Like	
	Channel Architecture	62
3.8	Injection of Many Substreams of Both Components	64
3.8.1	Multilamination of Fluid Layers in an Interdigital Channel	
	Configuration	64
3.8.2	Vertical Multilamination of Fluid Layers Using a V-type Nozzle Array	73
3.8.3	Multilamination Using a Stack of Platelets with Microchannels	75
3.8.4	Multilamination Using a Stack of Platelets with Star-Shaped Openings	79
3.9	Decrease of Diffusion Path Perpendicular to the Flow Direction by	
	Increase of Flow Velocity	80
3.9.1	Decrease of Layer Thickness by Hydrodynamic Focusing	80
3.10	Externally Forced Mass Transport, e.g. by Stirring, Ultrasonic Wave,	
	Electrical and Thermal Energy	83
3.10.1	Dynamic Micromixer Using Magnetic Beads	
3.11	References	83
4	Micro Heat Exchangers	70
4.1	Micro Heat Exchangers with Wide and Flat Channels	/ ہ ۵۷
4.1.1	Cross-Flow Heat Exchange in Stacked Plate Devices	07 00
4.1.2	Cross-Flow Heat Exchange Based on Cross-Mixing	07 07
4.1.3	Counter-Flow Heat Exchange in Stacked Plate Devices	44 04
4.1.4	Electrically Heated Stacked Plate Devices	+ע דה
4.2	Micro Heat Exchangers with Narrow and Deep Channels	/ לייייי חח
4.2.1	Heat Exchanger with One-Sided Structured Channels	אפ הה
4.2.2	Heat Exchanger with Double-Sided Structured Channels	99 100
	Set what Boudle-Stated Structured Channels	100

4.3	Micro Heat Exchangers with Breakthrough Channels	102
4.4	Axial Heat Conduction	104
4.4.1	Numerical Calculations of the Influence of Material Choice on	
	Heat Transfer Efficiency	104
4.4.2	The Use of Thermal Blocking Structures	105
4.5	Permanent Generation of Entrance Flow by Fins	106
4.6	Generation of a Periodic Flow Profile by Sine-Wave Microchannels	107
4.7	Microtechnology-Based Chemical Heat Pumps	108
4.8	Performance Characterization of Micro Heat Exchangers	109
4.8.1	Temperature Profiles of Micro Heat Exchangers Yielded by	
	Thermograms of Infrared Cameras	110
4.9	References	
5	Microseparation Systems and Specific Analytical Modules for	
	Microreactors	115
5.1	Microextractors	115
5.1.1	Partially Overlapping Channels	115
5.1.2	Wedge-Shaped Flow Contactor	
5.1.3	Contactor Microchannels Separated by a Micromachined Membrane	
5.1.4	Contactor Microchannels Separated by Sieve-Like Walls	
5.1.5	Micromixer-Settler Systems	
5.2	Microfilters	
5.2.1	Isoporous-Sieve Microfilters	
5.2.2	Cross-Flow Microfilters	131
5.3	Gas Purification Microsystems	
5.4	Gas Separation Microdevices	
5.5	Specific Analytical Modules for Microreactors	
5.5.1	Analytical Modules for In-Line IR Spectroscopy	
5.5.2	Analytical Module for Fast Gas Chromatography	
5.6	References	
6	Microsystems for Liquid Phase Reactions	143
6.1	Types of Liquid Phase Microreactors	
6.2	Liquid/Liquid Synthesis of a Vitamin Precursor in a Combined Mixer	
	and Heat Exchanger Device	144
6.3	Acrylate Polymerization in Micromixers	
6.4	Ketone Reduction Using a Grignard Reagent in Micromixers	154
6.5	Laboratory-Scale Organic Chemistry in Micromixer/Tube Reactors	
6.6	Dushman Reaction Using Hydrodynamic Focusing Micromixers and	
	High-Aspect Ratio Heat Exchangers	162
6.7	Synthesis of Microcrystallites in a Microtechnology-Based Continuous	
	Segmented-Flow Tubular Reactor	164
6.8	Electrochemical Microreactors	

6.8.1	Synthesis of 4-Methoxybenzaldehyde in a Plate-to-Plate Electrode Configuration	166
(9.2	o the prosting dynamic Operation of Closed Microcells	107
6.8.2 6.9	References	171
0.2		
7	Microsystems for Gas Phase Reactions	173
7.1	Catalyst Supply for Microreactors	175
7.2	Types of Gas Phase Microreactors	170
7.3	Microchannel Catalyst Structures	177
7.3.1	Flow Distribution in Microchannel Catalyst Reactors	177
7.3.2	Partial Oxidation of Propene to Acrolein	190
7.3.3	Selective Partial Hydrogenation of a Cyclic Triene	180
7.3.4	H_2/O_2 Reaction	184
7.3.5	Selective Partial Hydrogenation of Benzene	180
7.3.6	Selective Oxidation of 1-Butene to Maleic Anhydride	187
7.3.7	Selective Oxidation of Ethylene to Ethylene Oxide	187
7.3.8	Reactions Utilizing Periodic Operation	188
7.4	Microsystems with Integrated Catalyst Structures and Heat	
	Exchanger	193
7.4.1	Oxidative Dehydrogenation of Alcohols	193
7.4.2	Synthesis of Methyl Isocyanate and Various Other Hazardous Gases	197
7.4.3	H ₂ /O ₂ Reaction in the Explosion Regime	200
7.5	Microsystems with Integrated Catalyst Structures and Mixer	203
7.5.1	Synthesis of Ethylene Oxide	203
7.6	Microsystems with Integrated Catalyst Structures, Heat Exchanger and	1
	Sensors	209
7.6.1	Oxidation of Ammonia	209
7.6.2	H ₂ /O ₂ Reaction	214
7.7	Microsystems with Integrated Mixer, Heat Exchanger, Catalyst	
	Structures and Sensors	217
7.7.1	HCN Synthesis via the Andrussov Process	
7.8	References	
0		
8	Gas/Liquid Microreactors	229
8.1	Gas/Liquid Contacting Principles and Classes of Miniaturized	
0.2	Contacting Equipment	229
8.2	Contacting of Two Gas and Liquid Substreams in a Mixing Tee	
0.7.1	Configuration	232
8.2.1	Injection of One Gas and Liquid Substream	232
8.2.2	Injection of Many Gas and Liquid Substreams into One Common	
0.2.2	Channel	233
8.2.3	Injection of Many Gas and Liquid Substreams into One Packed	
	Channel	235

8.2.4	Injection of Many Gas Substreams into One Liquid Channel with	
	Catalytic Walls	
8.2.5	Injection of Many Gas and Liquid Substreams into Multiple Channels	239
8.3	Generation of Thin Films in a Falling Film Microreactor	244
8.4	References	255
9	Microsystems for Energy Generation	257
9.1	Microdevices for Vaporization of Liquid Fuels	257
9.2	Microdevices for Conversion of Gaseous Fuels to Syngas by Means	
	of Partial Oxidations	260
9.2.1	Hydrogen Generation by Partial Oxidations	260
9.2.2	Partial Oxidation of Methane in a Stacked Stainless Steel Sheet System	
9.2.3	Partial Oxidation of Methane in a Microchannel Reactor	
9.3	Microdevices for Conversion of Gaseous Fuels to Syngas by Means	
	of Steam Reforming	265
9.3.1	Steam Reforming of Methanol in Microstructured Platelets	
9.4	References	
10	Microsystems for Catalyst and Material Screening	271
10.1	Parallel Screening of Heterogeneous Catalysts in a Microchannel	
	Reactor	271
10.2	Parallel Screening of Heterogeneous Catalysts in Conventional	
	Mini-Scale Reactors	274
10.3	References	276
11	Methodology for Distributed Production	277
11.1	The Miniplant Concept	277
11.1.1	Miniplant Concept for HCN Manufacture	278
11.1.2	The Disposable Batch Miniplant	279
11.2	Paradigm Change in Large-Scale Reactor Design Towards Operability	
	and Environmental Aspects Using Miniplants	
11.3	References	283
Index		285