CONTENTS

xi

Preface	
LICIUCE	

Chapter 1 Genes: How they are	
inherited	1
Blood and ABO blood groups	1
Inheritance of ABO blood groups	3
Inheritance of more than one gene: ABO	
and rhesus blood groups	4
Sex chromosomes	9
Determining how traits are inherited:	
Pedigree analysis	10
What is—and isn't—inherited	12
Concluding remarks	14
Chapter 2 What genes are, what	
they do, and how they do it	15
Chromosomes, proteins, and nucleic acids:	
Figuring out what genes are	15
The structure of genes and what they do:	
The central dogma and the flow of	
information	18

information	18
How genes do what they do: Transcription	
and translation	19
The genetic code	22
DNA replication	23
The consequences of mutations	23
What causes mutations?	25
A final cautionary note	26

Chapter 3 Genes in populations

What is a population?	27
The concept of "effective population size"	28
The sex ratio and N_e	29
Inbreeding and $N_{\rm e}$	30
Variation in population size over time	
and N _e	30
Differential fertility and N _e	31
<i>N</i> _e for humans	33

Chapter 4 A simple model: Hardy–Weinberg equilibrium	35
Hardy–Weinberg principle	35
Exceptions	38
A real-life example	39
Some practical uses for Hardy–Weinberg	41
Chapter 5 Evolutionary forces	45
Non–random mating	45
Small population size	48
Mutation	53
Migration	56
Selection	60
Evolutionary forces: Summary	68
Chapter 6 Molecular evolution Functionally less important molecules (or parts of molecules) evolve faster than more	69
important ones	70
Conservative substitutions occur more	
frequently than disruptive ones	71
The rate of molecular evolution is	
approximately constant	72
Contrasting phenotypic and	
molecular evolution	73
How do new gene functions arise?	74
Gene regulation and phenotypic	
evolution	77
Chapter 7 Genetic markers	79
Classical markers: Immunogenetic markers	79
Classical markers: Biochemical	
polymorphisms	81
The first DNA markers: Restriction fragment	
length polymorphisms	84
Polymerase chain reaction	86
DNA sequencing: The sanger method	89

Next-generation sequencing	90
Targeting single DNA bases: SNPs	92
Variation in length	94
Other structural variation	99
Concluding remarks	100

Chapter 8 Sampling populations and individuals

Sampling populations: General issues	103
Sampling populations: Ethical issues	105
Archival samples	108

Chapter 9 Sampling DNA regions

Mitochondrial DNA	111
Y chromosomal DNA	116
Autosomal DNA	119
X chromosome DNA	121
Public databases	122

Chapter 10 Analysis of genetic data from populations

lata from populations	125
Genetic diversity within populations	125
Genetic distances between populations	128
Displaying genetic distance data: Trees	135
Displaying genetic data: Multidimensional	
scaling, principal components, and	
correspondence analysis	139

Chapter 11 Analysis of genetic data from individuals

Genetic distances for DNA sequences	147
Trees for DNA sequences	153
Rooting trees	156
Assessing the confidence of a tree	157
Network analyses	160
Genome-wide data: Unsupervised analyses	161

Chapter 12 Inferences about demographic history

demographic history	175
Dating events	175
Population size and population size change	187
Migration and admixture	194
Putting it all together	197

Chapter 13 Our closest living relatives

elatives	201
Resolving the trichotomy	205
Complications	206
Ape genetics and genomics	208

Chapter 14 The origins of our species

species	211
Human origins: The fossil record Models for human origins	215
	218

The genetic evidence: mtDNA	222
The genetic evidence: Y chromosome	224
The genetic evidence: Autosomes	225
Chapter 15 Ancient DNA	229
Properties of ancient DNA: Degradation	229
Properties of ancient DNA: Degradation	22/
Properties of ancient DNA. Contamination	227
Properties of ancient DNA: Contamination	252
History of ancient DNA studies	236
Ancient DNA: Archaic humans	237
Other uses for ancient DNA	244
1 1	
Chapter 16 Dispersal and	
migration	247
Out of Africa—how many times, when, and	
which way did they go?	251
Into remote lands: The colonization of the	
Americas	259
Into even more remote lands: The	
alerization of Polymonia	267
colonization of Polytiesia	207
Some concluding remarks	201
Chapter 17 Species-wide	
selection	283
Species-wide selection	284
Nonsynonymous mutations and the dN/dS	
ratio	284
Tests based on the allele frequency	
distribution	288
Selection tests based on comparing	
divergence to polymorphism	293
	297
Archaic genomes	271
Chapter 19 Local solution	299
Chapter 18 Local selection	304
Example: Lactase persistence	200
Example: EDAR	509
Ancient DNA	318
Concluding remarks	318
Chapter 19 Genes and culture	321
Are humans still evolving?	321
Genetic variation can be directly influenced	
by cultural practices	322
Genetic variation can be indirectly	
influenced by cultural practices	322
Using genetic analyses to learn more	
about subtral prestions. A grigultural	
about cultural practices: Agricultural	376
expansions	520
Using genetic analyses to learn more	
about cultural practices: Language	
replacements	332
Using genetic analyses to learn more	
about cultural practices: Dating the origin of	
clothing	333
Concluding remarks	339

Chapter 20	Ongoing	, and future
developmen	its in mo	lecular
anthropolog	;y	

More—and different kinds of—data: The	
other "omics"	341
Beyond "you": The microbiome	344
More analyses	347

341

Relating phenotypes to genotypes	351
Personal ancestry testing and genomics	360
References	363
Suggestions for additional reading	373
Index	375

,