Contents

CHAPTER 1	OVERVIEW	
1.1	Introduction to Modal Testing	1
1.2	Applications of Modal Testing	3
1.3	Philosophy of Modal Testing	6
1.4	Summary of Theory	8
1.5	Summary of Measurement Methods	14
1.6	Summary of Modal Analysis Processes	16
1.7	Review of Test Procedures, and Levels	20
1.8	Terminology and Notation	21
CHAPTER 2	THEORETICAL BASIS	
2.1	Introduction	25
2.2	Single-Degree-of-Freedom (SDOF) System	
	Theory	28
2.3	Presentation and Properties of FRF Data for	
	SDOF System	34
2.4	Undamped Multi-Degree-of-Freedom (MDOF)	
	Systems	49
2.5	MDOF Systems with Proportional Damping	62
2.6	MDOF Systems with Structural (Hysteretic)	
	Damping — General Case	66
2.7	MDOF Systems with Viscous Damping	
	General Case	74
2.8	Modal Analysis of Rotating Structures	80
2.9	Complex Modes	113
2.10	Characteristics and Presentation of MDOF	
	FRF Data	117
2.11	Non-sinusoidal Vibration and FRF Properties	132
2.12	Complete and Incomplete Models	144
2.13	Sensitivity of Models	150
2.14	Analysis of Weakly Non-linear Structures	154

.

CHAPTER 3	RESPONSE FUNCTION MEASUREMENT	•
	TECHNIQUES	
3.1	Introduction and Test Planning	163
3.2	Basic Measurement System	168
3.3	Structure Preparation	170
3.4	Excitation of the Structure	174
3.5	Transducers and Amplifiers	194
3.6	Analysers	207
3.7	Digital Signal Processing	209
3.8	Use of Different Excitation Signals	227
3.9	Calibration	254
3.10	Mass Cancellation	257
3.11	Rotational FRF Measurement	260
3.12	Measurements on Non-Linear Structures	265
3.13	Multi-point Excitation Methods	271
3.14	Measuring FRFs and ODSs using the	
	Scanning LDV	276
CHAPTER 4	MODAL PARAMETER EXTRACTION	
	METHODS	
4.1	Introduction	287
4.2	Preliminary Checks of FRF Data	292
4.3	SDOF Modal Analysis Methods	303
4.4	MDOF Modal Analysis in the Frequency	
	Domain (SISO)	331
4.5	Global Modal Analysis Methods in the	
	Frequency Domain	342
4.6	MDOF Modal Analysis in the Time Domain	349
4.7	Modal Analysis of Non-Linear Structures	359
4.8	Concluding Comments	368
CHAPTER 5	DERIVATION OF MATHEMATICAL MOD	ELS
5.1	Introduction	371
5.2	Modal Models	373
5.3	Refinement of Modal Models	380
5.4	Display of Modal Model	391
5.5	Response Models	396
5.6	Spatial Models	404
5.7	Mobility Skeletons and System Models	405

CHAPTER 6 APPLICATIONS

ADDEND	ICES	Α ΜΑΤΉς ΤΟΟΙ ΚΙΤ	
Notation			517
	6.6	Test Planning	506
	6.5	Response Prediction and Force Determination	499
	6.4	Coupled and Modified Structure Analysis	469
	6.3	Adjustment or Updating of Models	446
		and Prediction	416
	6.2	Comparison of and Correlation of Experiment	
	6.1	Introduction	415

APPENDICES A MATHS TOOLKIT

Index

	1	Use of Complex Algebra to Describe Harmonic	
		Vibration	521
	2	Review of Matrix Notation and Properties	523
	3	Matrix Decomposition and the SVD	529
	4	Transformations of Equations of Motion	
		between Stationary and Rotating Axes	537
	5	Fourier Analysis	539
References			545
Ìndau			

,