Contents

Part I Active Faults

1	Examination of the Correlation Between Tectonic Landforms and Shallow Subsurface Structural Datasets for the Estimation of Seismic Source Faults	3
2	Multivariate Statistical Analysis for Seismotectonic Provinces Using Earthquake, Active Fault, and Crustal Structure Datasets Takashi Kumamoto, Masataka Tsukada, and Masatoshi Fujita	31
3	Multiple Regression Analysis for Estimating Earthquake Magnitude as a Function of Fault Length and Recurrence Interval	43
4	Coseismic Tsunami Simulation Assuming the Displacement of High-Angle Branching Active Faults Identified on the Continental Slope Around the Japan Trench	55
5	Extensive Area of Topographic Anaglyphs Covering Inland and Seafloor Derived Using a Detailed Digital Elevation Model for Identifying Broad Tectonic Deformations	65

Par	II	Seismic Source Modeling and Seismic Motion	
6	Ger for	ation Between Stress Drops and Depths of Strong Motion neration Areas Based on Previous Broadband Source Models Crustal Earthquakes in Japan	77
7	Ear to to Kaz	rerogeneous Dynamic Stress Drops on Asperities in Inland rethquakes Caused by Very Long Faults and Their Application the Strong Ground Motion Prediction	87
8	Gre	nulation of Broadband Strong Motion Based on the Empirical en's Spatial Derivative Method	99
Par	t III	Probabilistic Risk Assessment with External Hazards	
9	Haz Hid	relopment of Risk Assessment Methodology Against External cards for Sodium-Cooled Fast Reactors	111
10	Kas Mas	ectiveness Evaluation About the Tsunami Measures Taken at shiwazaki-Kariwa NPSsato Mizokami, Takashi Uemura, Yoshihiro Oyama, unori Yamanaka, and Shinichi Kawamura	123
11	Pro and Hite	relopment of a New Mathematical Framework for Seismic babilistic Risk Assessment for Nuclear Power Plants – Plant Current Status –	137
Par	t IV	Nuclear Risk Governance in Society	
12	the Ma	icits of Japanese Nuclear Risk Governance Remaining After Fukushima Accident: Case of Contaminated Water nagement	157
13	A C	Community-Based Risk Communication Approach on Low-Dose diation Effect	171