CONTENTS

Preface		υ
1.	Plant	1-41
	Plant Cells	1
	Genome Organization and Gene Expression	18
	Water and Plant Cells	21
	Water Balance of Plants	34
2.	Photosynthesis	42-108
	The Light Reactions	42
	The Carbon Reactions	60
	Physiological and Ecological Considerations	93
3.	RESPIRATION AND LIPID METABOLISM	109-146
	Isolation of Mitochondria	109
	The Q-Cycle Explains How Complex III Pumps Protons Across the Inner Mitochondrial Membrane	115
	Multiple Energy Conservation Bypasses in Oxidative Phosphorylation of Plant Mitochondria	118
	Transport into and Out of Plant Mitochondria	131
	Does Respiration Reduce Crop Yields?	142
	The Lipid Composition of Membranes Affects the Cell Biology	
	and Physiology of Plants	144
	Utilization of Oil Reserves in Cotyledons	146
4.	Assimilation of Mineral Nutrients	147-151
	Development of a Root Nodule	147
	Measurement of Nitrogen Fixation	149
	The Synthesis of Methionine	149
	Oxygenases	150

vii	Contents	
5.	SECONDARY METABOLITES AND PLANT DEFENSE 1	5 2-1 57
	Cutin, Waxes, and Suberin	152
	Structure of Various Triterpenes	155
	The Shikimic Acid Pathway	156
6.	Cell Walls : Structure, Biogenesis and Expansion 1	58-168
	Plant Cell Walls Play a Major Role in Carbon Flow through Ecosystems	158
	Terminology for Polysaccharide Chemistry	158
	Molecular Model for the Synthesis of Cellulose and Other Wall Polysaccharides that Consist of a Disaccharide Repeat	160
	The Mechanical Properties of Cell Walls : Studies with Nitella	161
	Wall Degradation and Plant Defense	165
	Glucanases and Other Hydrolytic Enzymes May Modify the Matrix	168
7.	GROWTH AND DEVELOPMENT 10	69-179
	Embryonic Dormancy	169
	Rice Embryogenesis	170
	Polarity of Fucus Zygotes	170
	Azolla Root Development	175
	Class III HD-Zip Transcription Factors Promote Adaxial Development through a micro-RNA-Sensitive Mechanism	177
	During Senescence Photoactive Chlorophyllide is Converted into a Colourless Chlorophyll Catabolite	179
8.	CYTOKININS : REGULATORS OF CELL DIVISION 18	80-190
	Cultured Cells Can Acquire the Ability to Synthesize Cytokinins	180
	Structures of Some Naturally Occurring Cytokinins	181
	Various Methods are Used to Detect and Identify Cytokinins	181
	The Biologically Active Form of Cytokinin is the Free Base	183
	Cytokinins are also Present in Some tRNAs in Animal and Plant Cell	ls 183
	The Ti Plasmid and Plant Genetic Engineering	185
	Cytokinin can Promote Light-Mediated Development	186
	Cytokinins Promote Cell Expansion and Greening in Cotyledons	189
	Cytokinins Interact with Elements of the Circadian Clock	190
9.	What is Plant Stress 19	9 1-208
	Biotic Stress	191
	Abiotic Stress	192
	Stress Factors Due to the Presence of Pathogens	193

Contents	ix
Stress Factors Due to Causes Associated with Phenological Period	s 193
Stress Factors Due to Climatic Causes	194
Stress Factors Associated with Crop Management	194
Natural Stress	195
Plant Stress Measurement	200
How to Recognize Plant Stress	207
10. EFFECTS OF ABIOTIC STRESS ON PLANTS : A SYSTEMS BIOLOGY PERSPECTIVE	е 209-222
Introduction	209
Plant Responses to the Environment are Complex	209
Environmental Limits to Crop Production	210
Multiple Factors Limit Plant Growth	210
Central Regulators Limit Key Plant Processes	211
Systems Biology Approach to Abiotic Stress	213
Co-Expression Analyses Identify Regulatory Hubs	214
Time-series Analyses Reveal Multiple Phases in Stress Responses	215
11. PLANT BREEDING	223-231
Breeding for Heat Stress Tolerance	223
Breeding for Drought Stress Tolerance	226
12. BIO-TECHNOLOGICAL APPROACHES TO STUDY PLANT RESPONSES TO STRESS	232-241
Introduction	232
Genomics	234
Proteomics	235
Metabolomics	237
Conclusions	241
13. PROTEOMICS : A TOOL FOR THE STUDY OF PLANT RESPONSE TO	
Abiotic Stress	242-249
Introduction	242
General Model of Stress in Plants	243
Proteomics in Understanding Abiotic Stress Water Stress	244
Saline Stress	247
Conclusions and Perspectives	249
14. METABOLIC FLEXIBILITY HELPS PLANTS TO SURVIVE STRESS	250-260
Introduction	250
Plant Respiratory Metabolism Represents a Central Feature of Plant Metabolic Elevibility	250
Pyrophosphate Permits Microbes and Plants to Conserve ATP	250
- Jior noophate i chinis microbes and i fants to conserve All	202

Alternative Pathways of Plant Mitochondrial Electron Transport also Contribute to the Survival of Pi-Starved Plants	259
Conclusions	260
15. Applications of Molecular Biology and Genomics to Genetic Enhancement of Crop Tolerance to Abiotic Stress 24	61 -2 91
Introduction	261
Abiotic Stress-extent of the Problem	261
Genetic and Physiological Mechanisms that Control Stress Tolerance	264
Progress in Breeding – Slow but Real	268
Genomics – The New Genetics	270
Synteny and Comparative Genomics	271
Genomics Applications in CGIAR Mandate Crops in Relation to Abiotic Stress Tolerance	273
Gene Cloning	273
Micro-arrays	275
Transformation in the Crop and the Model	277
Leads from Model Species	277
Germplasm Collections	281
Conclusions	282
Options for the Way Forward	282
Genetic Engineering for Abiotic Stress Tolerance in Plants	287
16. Ozone : Its Formation and Impacts on Plants 2	92-316
Introduction	292
Ozone Sources	292
Patterns of Ozone Concentrations and Exposure	293
Ozone Exposure Indices for Vegetation	296
How Ozone Depletion will Affect Global Plant Life	297
Effects of Elevated UV-B Radiation or O3 on the Incidence of Crop Pes	ts 309
Effects of Elevated UV-B Radiation or O3 on Crop-weed Competition	1 312
Considerations Relevant to the Study of Crop Responses to Elevated Levels of UV-B radiation and O ₄	313
Conclusions and Future Research Directions	315
17. BIO-TECHNOLOGY FOR CLIMATE CHANGE ADAPTATION OF CROPS 32	17-322
Background	318
How the Technology Contributes to Climate Change Adaptation	318
Knowledge Requirements	321
Opportunities for Implementation	322

Contents	xi
18. Climate Change and Plant	323-403
Effect of Climate Change on Plant Bio-Diversity	323
Photo-Synthesis and High Temperature Stress	375
19. The Impact of Salinity Stress	404-419
Introduction	404
Types and Causes of Salinity	405
Measuring Soil Salinity	409
The Repercussions of Salinity	412
20. The Mitigation of Drought Stress	420-445
Mitigation of Drought Stress by Crop Management	420
Soil and Water Conservation	422
Mitigation of Drought Stress by Crop Plant Breeding	425
21. Heat Stress and its Impact	446-452
The Environmental and Physiological Nature of Heat Stress	446
Repercussions of Heat Stress	450
22. Impact of Mineral Deficiency Stress	453-457
Visible Symptoms of Stress	455
23. Oxidative Stress	458-490
Activation of Oxygen	458
Oxidative Damage to Lipids	462
Sites of Activated Oxygen Production	468
Defence Mechanisms	473
Herbicide Tolerance	484
24. Impact of Cold Stress	491-518
The Environmental and Physiological Nature of Stress	491
Plant Chilling Stress and its Repercussions	493
The Physiological and Agronomic Repercussions of Freezing Stres	s 497
Symptoms of Deficiency in Essential Minerals	502
25. Hydrogen Peroxide Functions as a Stress Signal in Plants	519-54 6
Introduction	519
The Generation and Removal of H ₂ O ₂	521
H ₂ O ₂ as a Signaling Molecule	522
The Role of Kinases and Phosphatases in the H ₂ O ₂ Signaling Pathway	525
Transcriptional Regulation of Gene Expression in Response to H_2C	₂ 526

ABA May be an Ancient Stress Signal	529
Structural Requirements for Biological Activity of Abscisic Acid	530
The Bioassay of ABA	530
The Yeast Two-Hybrid System	533
Yellow Cameleon : A Noninvasive Tool for Measuring Intra-cellular Calcium	534
The ABA Signal Transduction Pathway includes Several Protein Kinases	535
Promoter Elements that Regulate ABA Induction of Gene Expression	n 537
ABA May Play a Role in Plant Pathogen Responses	539
Proteins Required for Desiccation Tolerance	540
Seed Dormancy May be Primary or Secondary	542
ABA-Induced Senescence and Ethylene	546
26. Responses and Adaptations to Abiotic Stress 5	47-561
Stomatal Conductance and Yields of Irrigated Crops	547
Membrane Lipids and Low Temperatures	551
Ice Formation in Higher-Plant Cells	55 2
Water-Deficit-Regulated ABA Signaling and Stomatal Closure	553
Genetic and Physiological Adaptations Required for Zinc Hyperaccumulation	554
Cellular and Whole Plant Responses to Salinity Stress	557
27. Ethylene : The Gaseous Hormone 5	62-579
Ethylene in the Environment Arises Biotically and Abiotically	56 2
Ethylene Readily Undergoes Oxidation	563
Ethylene can be Measured by Gas Chromatography	563
Cloning of the Gene that Encodes ACC Synthase	564
Cloning of the Gene that Encodes ACC Oxidase	564
Ethylene Binding to ETR1 and Seedling Response to Ethylene	565
ACC Synthase Gene Expression and Bio-technology	565
The hookless Mutation Alters the Pattern of Auxin Gene Expression	567
Ethylene Bio-synthesis can be Blocked with Anti-Sense DNA	568
Abscission and the Dawn of Agriculture	569
Bio-Technology for Abiotic Stress Tolerance	5 72
28. Breeding for Salt Tolerance in Rice 5	80-59 4
Salt-Effected Soils and their Extent	580
Prerequisite for the Development of Salt Tolerant Cultivars	581

Contents	xiii
Manifestation of Salt Stress on Plant	581
Mode of Tolerance to Salt Stress in Plants (Glycophytes)	583
Screening Methodology	589
Breeding Methodology	590
Genetics of Salt Tolerance	59 3
Impact of the Programme	593
29. Solute Transport	595-605
Relating the Membrane Potential to the Distribution of Several Ions across the Membrane : The Goldman Equation	595
Patch Clamp Studies in Plant Cells	596
Chemiosmosis in Action	599
Kinetic Analysis of Multiple Transporter Systems	600
ABC Transporters in Plants	601
Transport Studies with Isolated Vacuoles and Membrane Vesicles	602
30. Stress Resistance Breeding	606-630
Introduction	606
Plant Breeding for Drought Resistance	606
Abiotic Stress and Breeding for Drought Resistance	617
31. Abiotic Stress Responses in Tea	631-643
Introduction	632
Abiotic Stress and the Tea Plant	633
Responses of Drought Stress in Tea	634
Responses of Heavy Metal Stress in Tea	638
Effect of Mineral Nutrition in Abiotic Stress Responses in Tea	639
Abiotic Stress Recovery Responses in Tea : An Insight	640
Molecular Physiology of Abiotic Stress Responses in Tea	641
Conclusion and Future Perspectives	642
32. Phytochrome and Light Control of Plant Development	644-65 5
Mougeotia : A Chloroplast with a Twist	644
Experiments with Plane Polarized Light	645
A Model for Chloroplast Rotation	648
Phytochrome and High-Irradiance Responses	648
The Origins of Phytochrome as a Bacterial Two-Component Recep	otor 649
Profiling Gene Expression in Plants	652
Two-Hybrid Screens and Co-immuno-precipitation	653

xiv Contents	
Phytochrome Effects on Ion Fluxes	653
Micro-array Analysis of Shade Avoidance	655
33. BLUE-LIGHT RESPONSES : MORPHOGENESIS AND STOMATAL MOVEME	NTS 656-663
Blue-Light Sensing and Light Gradients	656
Guard Cell Osmoregulation and a Blue Light-Activated Metabolic Switch	657
The Coleoptile Chloroplast	659
Phytochrome-Mediated Responses in Stomata	661
34. IN VITRO PROPAGATION OF STACHYS TMOLEA BOISS. (LAMIACEAE) Bengi (BABA) ERDAG and A. Kamil YUREKLI	664-672
Introduction	664
Material and Methods	665
Results and Discussion	666
Conclusion	671
References	671
35. Stress-Responsive Expression, Subcellular Localization and Protein-Protein Interactions of the Rice Metacaspase Family	673-700
Lei Huang, Huijuan Zhang, Yongbo Hong, Shixia Liu, Dayong Li and Fen	gming Song
Introduction	674
Results	675
Discussion	686
Material and Methods	688
Conclusion	693
References	695