

CONTENTS

Preface		xi	
The Computer Interface			xiii
1	Sym	nmetry in Physical Systems	1
	1.1	Symmetries and invariances 1	
		1.1.1 Symmetries and conservation laws 2	
		1.1.2 Noether's theorem and Curie's principle 5	
	1.2	Spatial symmetries 7	
		1.2.1 Reflection symmetry in nature 8	
		1.2.2 Translation symmetries; mosaics and crystals 10	
	1.3	Rotational symmetries 12	
		1.3.1 Active and passive rotations; Euler angles 13	
		1.3.2 Coordinate systems for rotations 17	
		1.3.3 Angular momentum and rotations: a cameo portrait 19	
	1.4	Discrete symmetries and quantum systems 21	
		1.4.1 Parity symmetry 22	
		1.4.2 Charge conjugation and time reversal 25	
		1.4.4 <i>BCT</i> and the Bouli principle: Liider's theorem 32	
	15	Ricken symmetries from cosmetology to cosmology 34	
	1.5	Dioken symmetries from cosmology to cosmology 54	
		Problems on symmetry in physical systems 36	

2 Mathematical and Quantal Preliminaries

- 2.1 Matrix definitions and manipulations 42
 - 2.1.1 Linear spaces and operator matrix elements 42
 - 2.1.2 Inner and direct products of matrices 45
 - 2.1.3 Operations on matrices, and special properties 50
 - 2.1.4 Phase manipulation rules 52

2.2 Transformations and operators 53

- 2.2.1 Similarity and symmetry transformations 53
- 2.2.2 Unitarity: its interpretation in quantum mechanics 57
- 2.2.3 Operator exponentials and commutators 58
- 2.2.4 Raising and lowering operators 59
- 2.3 Eigenvalues and eigenstates 63
 - 2.3.1 Eigenvalues of operators and matrices 63
 - 2.3.2 Diagonalizing matrices 64
 - 2.3.3 Eigenvectors as basis states 66
- 2.4 Spinors and their properties 67
 - 2.4.1 Definitions of spinors 67
 - 2.4.2 Representing spinors; rotations 69
 - 2.4.3 Objects that distinguish turns though 2π and 4π 72
- 2.5 A primer on groups 72
 - 2.5.1 Group examples and definitions 73
 - 2.5.2 Group theory terminology 79
 - 2.5.3 Representations of groups 80
 - 2.5.4 Interesting groups and their uses 84
 - 2.5.5 Irreducibility of a representation 88
- 2.6 Mathematics, groups, and the physical sciences 89 Problems on mathematical and quantal preliminaries 90

3 Rotational Invariance and Angular Momentum

- 3.1 Infinitesimal rotations; the J operators 95
 - 3.1.1 Schemes for describing rotations 96
 - 3.1.2 Commutation relations of J operators 97
 - 3.1.3 The spherical-basis operators J_{+1} , J_0 , J_{-1} 99
- 3.2 Orbital angular momentum operators 100
 - 3.2.1 Infinitesimal rotations applied to spatial functions 100
 - 3.2.2 Components of L in spherical polar coordinates 103
 - 3.2.3 The special role of the operator L_z 105
- 3.3 Other representations of **J** operators 105
 - 3.3.1 The 2 × 2 matrix representation: Pauli matrices 105
 - 3.3.2 Eigenvectors of the Pauli matrices 108
 - 3.3.3 Finite rotations and Pauli matrices 109
 - 3.3.4 Spinor space and its operators 111
- 3.4 Angular momentum eigenvalues and matrix elements 113
 - 3.4.1 Eigenvalues of J^2 and J_z ; irreducibility 113
 - 3.4.2 Matrix elements in the spherical basis 116
 - 3.4.3 Matrix elements in the Cartesian basis 117
 - 3.4.4 Operator matrices for j = 1/2, 1, and 3/2 119
 - 3.4.5 Angular momentum: geometrical and dynamical 120

95

3.5 Reference frames: spin and orbital angular momenta 122 Problems on rotational invariance and angular momentum 124

4 Angular Momentum Eigenstates

- 4.1 Orbital eigenstates and spherical harmonics 127
 - 4.1.1 Legendre functions and their properties 129
 - 4.1.2 Displaying Legendre functions; polar diagrams 131
 - 4.1.3 Calculating and visualizing spherical harmonics 135
 - 4.1.4 Solid harmonics and other variants 143
- 4.2 Spherical-basis vectors and angular momentum in a field 149
 - 4.2.1 Vectors in the spherical basis 150
 - 4.2.2 Infinitesimal rotations of vectors 152
 - 4.2.3 The electromagnetic field and photons 155
- 4.3 Spin eigenstates and their representations 156
 - 4.3.1 What is spin? 156
 - 4.3.2 Intrinsic spin eigenstates 160
 - 4.3.3 Spinor-space representations 162
 - 4.3.4 Time reversal and spin 163

Problems on angular momentum eigenstates 165

5 Angular Momentum in Quantum Systems

5.1 Rotational symmetry and dynamical angular momentum 170

- 5.1.1 Angular momentum and the role of Planck's constant 170
 - 5.1.2 Classical angular momentum: Ehrenfest theorems 172
 - 5.1.3 Larmor precession in magnetic fields 175
- 5.2 Uncertainty relations for angular momentum 179
 - 5.2.1 Heisenberg uncertainty relations for quantum systems 180
 - 5.2.2 Angular momentum uncertainties 183
 - 5.2.3 Uncertainties between angular momentum and angles 186
- 5.3 The semiclassical vector model 189
 - 5.3.1 Constructing the vector model of angular momentum 190
 - 5.3.2 Uses and limitations of the vector model 192

5.4 Angular momentum and wave mechanics 193
5.4.1 Plane waves and centripetal barriers; Bessel functions 193

- 5.4.2 Displaying partial-wave expansions 199
- 5.5 The conceptual development of angular momentum 203 Problems on angular momentum in quantum systems 206

6 Finite Rotations of Angular Momentum Eigenstates

- 6.1 Introduction to rotation matrices 211
 - 6.1.1 Review of rotations and angle schemes 212
 - 6.1.2 Group and factorization properties of rotations 213

127

169

211

- 6.2 Determining rotation matrices 213
 - 6.2.1 Rotation of eigenstates about z axes 214
 - 6.2.2 Rotations about the y axis for j = 1 216
 - 6.2.3 Constructing d/ from spinor representations 218
 - 6.2.4 Relation of d' elements to other functions 220
 - 6.2.5 Computing reduced rotation matrix elements 222
- 6.3 Interpreting rotated states 224
 - 6.3.1 Orbital angular momentum states 225
 - 6.3.2 Transformation amplitudes for arbitrary j 227
 - 6.3.3 Visualizing rotation matrix elements 230
- 6.4 Properties of rotation matrices 232
 - 6.4.1 Symmetry properties of d^{i} and D^{i} 232
 - 6.4.2 Unitarity and orthogonality properties 234
 - 6.4.3 Classical limits of rotation matrices 236
 - 6.4.4 Spherical harmonics as rotation matrix elements 239
- 6.5 Rigid-body rotations in quantum mechanics 240
 - 6.5.1 The D^{j} as angular momentum eigenfunctions 241
 - 6.5.2 The Hamiltonian of a rigid rotator 242
 - 6.5.3 Rotational states of molecules and nuclei 245

Problems on finite rotations of angular momentum eigenstates 247

7 Combining Two Angular Momentum Eigenstates 251

- 7.1 The semiclassical vector model for addition 252
 - 7.1.1 Vector-addition construction 252
 - 7.1.2 Triangle and projection selection rules 253
 - 7.1.3 Interpreting coupling: spin-orbit interaction 255
 - 7.1.4 Degeneracy of energy states in the Coulomb potential 258
- 7.2 Coupling coefficients: definitions and general properties 263
 - 7.2.1 Combining two angular momenta: Clebsch-Gordan coefficients 264
 - 7.2.2 Unitarity of Clebsch-Gordan coefficients 264
 - 7.2.3 Determining coefficients from spinor representations 266
- 7.3 The 3-j coefficients and their properties 269
 - 7.3.1 Three angular momenta coupled to zero; 3-j coefficients 269
 - 7.3.2 Visualizing symmetry properties 276
 - 7.3.3 Classical limits of 3-j coefficients 278
 - 7.3.4 Expressions for one angular momentum small 280
- 7.4 Computing coupling coefficients 280
 - 7.4.1 Tabulations of coupling coefficients 281
 - 7.4.2 Computing 3-j coefficients efficiently 282
- 7.5 Rotation matrices and coupling coefficients 286
 - 7.5.1 Clebsch-Gordan series for combining D^{j} elements 286
 - 7.5.2 Special cases of Clebsch-Gordan series 288
 - 7.5.3 Integrals of rotation functions 292
 - 7.5.4 Examples: Celestial bodies and rotator matrix elements 295

Problems on combining two angular momentum eigenstates 300

CONTENTS i x

8 Irreducible Spherical Tensors and Spin 305

8.1 Definition of irreducible tensor operators 308
8.1.1 Defining irreducible spherical tensors 308
8.1.2 Racah's definition and its applications 309

8.2 Combining irreducible tensors 312 8.2.1 Building up irreducible spherical tensors 312

8.2.2 Contraction of irreducible tensors to scalars 315

8.3 Wigner-Eckart theorem; reduced matrix elements 316

- 8.3,1 Geometry and dynamics: The Wigner-Eckart theorem 317
- 8.3.2 Conventions for reduced matrix elements 320
- 8.3.3 Determining and using reduced matrix elements 320

8.4 Density matrices and polarization tensors 325

- 8.4.1 Spin density matrices and spin tensors 325
 - 8.4.2 Spin precession in magnetic fields: rotating frames 330
 - 8.4.3 Spin transport through magnetic field gradients 335

Problems on irreducible spherical tensors and spin 341

9 Recombining Several Angular Momentum Eigenstates 345

- 9.1 Recoupling three angular momenta 345
 - 9.1.1 Racah and 6-j coefficients for three angular momenta 345
 - 9.1.2 Recoupling tetrahedra, quadrilaterals, and trees 348

9.2 Formulas for 6-j coefficients 350

- 9.2.1 Expansion in terms of 3-j coefficients 350
- 9.2.2 Algebraic expressions for 6-j coefficients 352
- 9.2.3 Tabulations of 6-j coefficients 354

9.3 Properties of recoupling coefficients 354

- 9.3.1 Orthogonality relations of 6-j coefficients 355
- 9.3.2 Symmetries and special values of 6-j coefficients 355
- 9.3.3 Computing 6-j coefficients efficiently 359

9.4 Scalar products of irreducible tensors 361

- 9.4.1 Factorization and projection theorems for tensors 361
- 9.4.2 Matrix elements of multipole expansions 365
- 9.4.3 Tensors in L-S and j-j coupling schemes 367

9.5 Recoupling four angular momenta 370

- 9.5.1 Definition and computation of 9-j coefficients 370
- 9.5.2 Symmetries, special values, and sum rules of 9-j coefficients 374
- 9.5.3 Tensor matrix elements in coupled schemes 376
- 9.5.4 Transformations between L S and j j coupling 377
- 9.5.5 Graphical and automated methods 380

Problems on recombining several angular momentum eigenstates 381

EPILOGUE

385

APPENDIX I NOTEBOOKS FOR MATHEMATICA 387

x CONTENTS

APPENDIX II NUMERICAL COMPUTER PROGRAMS IN C 407 Cl Program for reduced rotation matrix elements 410 C2 Program for 3-j coefficients 412 C3 Program for 6-j coefficients 415 C4 Program for 9-*j* coefficients 417 APPENDIX III **TABLES OF FORMULAS** 421 Legendre functions and spherical harmonics 421 **T**1 Rotation matrix elements 423 T2 The 3-*j* coefficients 425 T3 Irreducible spherical tensor operators 429 T4 The 6-*j* coefficients 431 T5 The 9-j coefficients 433 T6 REFERENCES 437 INDEX 449