
Preface xi
The Computer Interface xiii
1 Symmetry in Physical Systems 1
1.1 Symmetries and invariances 1
1.1.1 Symmetries and conservation laws 2
1.1.2 Noether's theorem and Curie's principle 5
1.2 Spatial symmetries 7
1.2.1 Reflection symmetry in nature 8
1.2.2 Translation symmetries; mosaics and crystals 10
1.3 Rotational symmetries 12
1.3.1 Active and passive rotations; Euler angles 13
1.3.2 Coordinate systems for rotations 17
1.3.3 Angular momentum and rotations: a camco portrait 19
1.4 Discrete symmetries and quantum systems 21
1.4.1 Parity symmetry 22
1.4.2 Charge conjugation and time reversal 25
1.4.3 Maxwell's equations and $P C T 3$ 30
1.4.4 $P C T$ and the Pauli principle: Lüder's theorem 32
1.5 Broken symmetries from cosmetology to cosmology 34
Problems on symmetry in physical systems 36
2 Mathematical and Quantal Preliminaries 41
2.1 Matrix definitions and manipulations 42
2.1.1 Linear spaces and operator matrix elements 42
2.1.2 Inner and direct products of matrices 45
2.1.3 Operations on matrices, and special properties 50
2.1.4 Phase manipulation rules 52
2.2 Transformations and operators 53
2.2.1 Similarity and symmetry transformations 53
2.2.2 Unitarity: its interpretation in quantum mechanics 57
2.2.3 Operator exponentials and commutators 58
2.2.4 Raising and lowering operators 59
2.3 Eigenvalues and eigenstates 63
2.3.1 Eigenvalues of operators and matrices 63
2.3.2 Diagonalizing matrices 64
2.3.3 Eigenvectors as basis states 66
2.4 Spinors and their properties 67
2.4.1 Definitions of spinors 67
2.4.2 Representing spinors; rotations 69
2.4.3 Objects that distinguish turns though 2π and $4 \pi 72$ 72
2.5 A primer on groups 72
2.5.1 Group examples and definitions 73
2.5.2 Group theory terminology 79
2.5.3 Representations of groups 80
2.5.4 Interesting groups and their uses 84
2.5.5 Irreducibility of a representation 88
2.6 Mathematics, groups, and the physical sciences 89
Problems on mathematical and quantal preliminaries 90
3 Rotational Invariance and Angular Momentum 95
3.1 Infinitesimal rotations; the \mathbf{J} operators 95
3.1.1 Schemes for describing rotations 96
3.1.2 Commutation relations of \mathbf{J} operators 97 97
3.1.3 The spherical-basis operators $\mathbf{J}_{+1}, \mathbf{J}_{0}, \mathbf{J}_{-1}$ 99
3.2 Orbital angular momentum operators 100
3.2.1 Infinitesimal rotations applied to spatial functions 100
3.2.2 Components of \mathbf{L} in spherical polar coordinates 103
3.2.3 The special role of the operator $L_{z} 10$
3.3 Other representations of \mathbf{J} operators 105
3.3.1 The 2×2 matrix representation: Pauli matrices 105
3.3.2 Eigenvectors of the Pauli matrices 108
3.3.3 Finite rotations and Pauli matrices 109
3.3.4 Spinor space and its operators 111
3.4 Angular momentum eigenvalues and matrix elements 113
3.4.1 Eigenvalues of \mathbf{J}^{2} and J_{z}; irreducibility 113
3.4.2 Matrix elements in the spherical basis 116
3.4.3 Matrix elements in the Cartesian basis 117
3.4.4 Operator matrices for $j=1 / 2,1$, and $3 / 2$ 119
3.4.5 Angular momentum: geometrical and dynamical 120
3.5 Reference frames: spin and orbital angular momenta 122
Problems on rotational invariance and angular momentum 124
4 Angular Momentum Eigenstates 127
4.1 Orbital eigenstates and spherical harmonics 127
4.1.1 Legendre functions and their properties 129
4.1.2 Displaying Legendre functions; polar diagrams 131
4.1.3 Calculating and visualizing spherical harmonics 135
4.1.4 Solid harmonics and other variants 143
4.2 Spherical-basis vectors and angular momentum in a field 149
4.2.1 Vectors in the spherical basis 150
4.2.2 Infinitesimal rotations of vectors 152
4.2.3 The clectromagnetic field and photons 155
4.3 Spin eigenstates and their representations 156
4.3.1 What is spin? 156
4.3.2 Intrinsic spin eigenstates 160
4.3.3 Spinor-space representations 162
4.3.4 Time reversal and spin 163
Problems on angular momentum eigenstates 165
5 Angular Momentum in Quantum Systems 169
5.1 Rotational symmetry and dynamical angular momentum 170
5.1.1 Angular momentum and the role of Planck's constant 170
5.1.2 Classical angular momentum: Ehrenfest theorems 172
5.1.3 Larmor precession in magnetic fields 175
5.2 Uncertainty relations for angular momentum 179
5.2.1 Heisenberg uncertainty relations for quantum systems 180
5.2.2 Angular momentum uncertainties 183
5.2.3 Uncertainties between angular momentum and angles 186
5.3 The semiclassical vector model 189
5.3.1 Constructing the vector model of angular momentum 190
5.3.2 Uses and limitations of the vector model 192
5.4 Angular momentum and wave mechanics 193
5.4.1 Plane waves and centripetal barriers; Bessel functions 193
5.4.2 Displaying partial-wave expansions 199
5.5 The conceptual development of angular momentum 203
Problems on angular momentum in quantum systems 206
6 Finite Rotations of Angular Momentum Eigenstates 211
6.1 Introduction to rotation matrices 211
6.1.1 Revicw of rotations and angle schemes 212
6.1.2 Group and factorization properties of rotations 213
6.2 Determining rotation matrices 213
6.2.1 Rotation of eigenstates about z axes 214
6.2.2 Rotations about the y axis for $j=1$ 216
6.2.3 Constructing d from spinor representations 218
6.2.4 Relation of d^{\prime} elements to other functions 220
6.2.5 Computing reduced rotation matrix elements 222
6.3 Interpreting rotated states 224
6.3.1 Orbital angular momentum states 225
6.3.2 Transformation amplitudes for arbitrary j 227
6.3.3 Visualizing rotation matrix elements 230
6.4 Properties of rotation matrices 232
6.4.1 Symmetry properties of \mathbf{d}^{j} and \mathbf{D}^{j} 232
6.4.2 Unitarity and orthogonality properties 234
6.4.3 Classical limits of rotation matrices 236
6.4.4 Spherical harmonics as rotation matrix elements 239
6.5 Rigid-body rotations in quantum mechanics 240
6.5.1 The \mathbf{D}^{j} as angular momentum eigenfunctions 241
6.5.2 The Hamiltonian of a rigid rotator 242
6.5.3 Rotational states of molecules and nuclei 24 245
Problems on finite rotations of angular momentum eigenstates 247
7 Combining Two Angular Momentum Eigenstates 251
7.1 The semiclassical vector model for addition 252
7.1.1 Vector-addition construction 252
7.1.2 Triangle and projection selection rules 253
7.1.3 Interpreting coupling: spin-orbit interaction 255
7.1.4 Degeneracy of energy states in the Coulomb potential 258
7.2 Coupling coefficients: definitions and general properties 263
7.2.1 Combining two angular momenta: Clebsch-Gordan cocfficients 264
7.2.2 Unitarity of Clebsch-Gordan coefficients 264
7.2.3 Determining coefficients from spinor representations 266
7.3 The 3-j coefficients and their properties 269
7.3.1 Three angular momenta coupled to zero; $3-j$ coefficients 269
7.3.2 Visualizing symmetry properties 276
7.3.3 Classical limits of 3 -j coefficients 278
7.3.4 Expressions for one angular momentum small 280
7.4 Computing coupling coefficients 280
7.4.1 Tabulations of coupling cocfficients 281
7.4.2 Computing 3 -j coefficients efficiently 282
7.5 Rotation matrices and coupling coefficients 286
7.5.1 Clebsch-Gordan scries for combining D^{j} elements 286
7.5.2 Special cases of Clebsch-Gordan series 28
7.5.3 Integrals of rotation functions 292
7.5.4 Examples: Celestial bodies and rotator matrix elements 295
Problems on combining two angular momentum eigenstates 300
8 Irreducible Spherical Tensors and Spin 305
8.1 Definition of irreducible tensor operators 3 308
8.1.1 Defining irteducible spherical tensors 308
8.1.2 Racah's definition and its applications 309
8.2 Combining irreducible tensors 312
8.2.1 Building up irreducible spherical tensors 312
8.2.2 Contraction of irreducible tensors to scalars 315
8.3 Wigner-Eckart theorem; reduced matrix elements 316
8.3.1 Geometry and dynamics: The Wigner-Eckart theorem 317
8.3.2 Conventions for reduced matrix clements 320
8.3,3 Determining and using reduced matrix elements 320
8.4 Density matrices and polarization tensors 325
8.4.1 Spin density matrices and spin tensors 325
8.4.2 Spin precession in magnetic fields: rotating frames 330
8.4.3 Spin transport through magnetic field gradients 335
Problems on irreducible spherical tensors and spin 341
9 Recombining Several Angular Momentum Eigenstates 345
9.1 Recoupling three angular momenta 345
9.1.1 Racah and 6 -j coefficients for three angular momenta 345
9.1.2 Recoupling tetrahedra, quadrilaterals, and trees 348
9.2 Formulas for $6-j$ coefficients 350
9.2.1 Expansion in terms of $3-j$ cocfficients 350
9.2.2 Algebraic expressions for $6-j$ coefficients 352
9.2.3 Tabulations of 6 -j coefficients 354
9.3 Properties of recoupling coefficients 354
9.3.1 Orthogonality relations of 6 -j coefficients 355
9.3.2 Symmetries and special values of 6 - j coefficients 355
9.3.3 Computing 6 -j coefficients efficiently 359
9.4 Scalar products of irreducible tensors 361
9.4.1 Factorization and projection theorems for tensors 361
9.4.2 Matrix elements of multipole expansions 365
9.4.3 Tensors in $L-S$ and $j-j$ coupling schemes 367
9.5 Recoupling four angular momenta 370
9.5.1 Definition and computation of $9-j$ cocfficients 370
9.5.2 Symmetries, special values, and sum rules of $9-j$ coefficients 374
9.5.3 Tensor matrix elements in coupled schemes 376
9.5.4 Transformations between $L-S$ and $j-j$ coupling 377
9.5.5 Graphical and automated methods 380
Problems on recombining several angular momentum eigenstates 381
EPILOGUE 385
APPENDIX I NOTEBOOKS FOR MATHEMATICA 387
APPENDIX II NUMERICAL COMPUTER PROGRAMS IN C 407
C1 Program for reduced rotation matrix elements 410
C2 Program for $3-j$ coefficients 412
C3 Program for $6-j$ coefficients 415
C4 Program for $9-j$ coefficients 417
APPENDIX III TABLES OF FORMULAS 421
T1 Legendre functions and spherical harmonics 421
T2 Rotation matrix elements 423
T3 The $3-j$ coefficients 425
T4 Irreducible spherical tensor operators 429
T5 The 6-j coefficients 431
T6 The 9-j coefficients 433
REFERENCES 437
INDEX 449

