Table of Contents – Part II

VAMR in Education and Cultural Heritage

Touching the Past: Haptic Augmented Reality for Museum Artefacts Mariza Dima, Linda Hurcombe, and Mark Wright	3
Augmented and Geo-Located Information in an Architectural Education Framework Ernest Redondo, Janina Puig, David Fonseca, Sergi Villagrasa, and Isidro Navarro	15
The Didactical Design of Virtual Reality Based Learning Environments for Maintenance Technicians Tina Haase, Nathalie Weisenburger, Wilhelm Termath, Ulrike Frosch, Dana Bergmann, and Michael Dick	27
Bridging the Gap between Students and Laboratory Experiments Max Hoffmann, Katharina Schuster, Daniel Schilberg, and Sabina Jeschke	39
Applying Saliency-Based Region of Interest Detection in Developing a Collaborative Active Learning System with Augmented Reality Trung-Nghia Le, Yen-Thanh Le, and Minh-Triet Tran	51
A 3D Virtual Learning System for STEM Education Tao Ma, Xinhua Xiao, William Wee, Chia Yung Han, and Xuefu Zhou	63
Visible Breadboard: System for Dynamic, Programmable, and Tangible Circuit Prototyping with Visible Electricity Yoichi Ochiai	73
The Application of Augmented Reality for Reanimating Cultural Heritage Sasithorn Rattanarungrot, Martin White, Zeeshan Patoli, and Tudor Pascu	85
Training to Improve Spatial Orientation in Engineering Students Using Virtual Environments Cristina Roca-Gonzalez, Jorge Martín-Gutiérrez, Cristina Mato Corredeguas, and Melchor García-Domínguez	96
Staging Choreographies for Team Training in Multiple Virtual Worlds Based on Ontologies and Alignments Emanuel Silva, Nuno Silva, and Leonel Morgado	105

_

"Make Your Own Planet": Workshop for Digital Expression and Physical Creation	116
Usability Evaluation of Virtual Museums' Interfaces Visualization Technologies Stella Sylaiou, Vassilis Killintzis, Ioannis Paliokas, Katerina Mania, and Petros Patias	124
Manasek AR: A Location-Based Augmented Reality Application for Hajj and Umrah Mounira Taileb, Elham Al-Ghamdi, Nusaibah Al-Ghanmi, Abeer Al-Mutari, Khadija Al-Jadani, Mona Al-Ghamdi, and Alanood Al-Mutari	134
Support of Temporal Change Observation Using Augmented Reality	
for Learning Takafumi Taketomi, Angie Chen, Goshiro Yamamoto, and Hirokazu Kato	144
Augmented Reality Workshops for Art Students Marcin Wichrowski, Ewa Satalecka, and Alicja Wieczorkowska	156
Games and Entertainment	
Serious Games as Positive Technologies Luca Argenton, Esther Schek, and Fabrizia Mantovani	169
An Experience-Based Chinese Opera Using Live Video Mapping Xiang-Dan Huang, Byung-Gook Lee, Hyung-Woo Kim, and Joon-Jae Lee	178
Serious Games: Customizing the Audio-Visual Interface Bill Kapralos, Robert Shewaga, and Gary Ng	190
Designing AR Game Enhancing Interactivity between Virtual Objects and Hand for Overcoming Space Limit	200
THE GROWTH: An Environmental Game Focusing on Overpopulation Issues Charn Pisithpunth, Panagiotis Petridis, Petros Lameras, and Ian Dunwell	210

Medical, Health and Rehabilitation Applications

Responses during Facial Emotional Expression Recognition Tasks Using Virtual Reality and Static IAPS Pictures for Adults with	225
Schizophrenia Esubalew Bekele, Dayi Bian, Zhi Zheng, Joel Peterman, Sohee Park, and Nilanjan Sarkar	220
Attention Training with an Easy-to-Use Brain Computer Interface Filippo Benedetti, Nicola Catenacci Volpi, Leonardo Parisi, and Giuseppe Sartori	236
Augmented Reality Treatment for Phantom Limb Pain Francesco Carrino, Didier Rizzotti, Claudia Gheorghe, Patrick Kabasu Bakajika, Frédérique Francescotti-Paquier, and Elena Mugellini	248
Comparing Data from a Computer Based Intervention Program for Patients with Alzheimer's Disease Agisilaos Chaldogeridis, Thrasyvoulos Tsiatsos, Moses Gialaouzidis, and Magdalini Tsolaki	258
Virtual Reality-Based System for Training in Dental Anesthesia Cléber G. Corrêa, Fátima de Lourdes dos Santos Nunes, and Romero Tori	267
Adaptive Architecture to Support Context-Aware Collaborative Networked Virtual Surgical Simulators (CNVSS) Christian Diaz, Helmuth Trefftz, Lucia Quintero, Diego Acosta, and Sakti Srivastava	277
Three-Dimensional Fitt's Law Model Used to Predict Movement Time in Serious Games for Rehabilitation Sergio García-Vergara and Ayanna M. Howard	287
Multi-users Real-Time Interaction with Bacterial Biofilm Images Using Augmented Reality Mohammadreza Hosseini, Tomasz Bednarz, and Arcot Sowmya	298
Attention Control and Eyesight Focus for Senior Citizens Miikka Lääkkö, Aryan Firouzian, Jari Tervonen, Goshiro Yamamoto, and Petri Pulli	309
Sense of Presence and Metacognition Enhancement in Virtual Reality Exposure Therapy in the Treatment of Social Phobias and the Fear of Flying	316
Ioannis Paliokas, Athanasios Tsakiris, Athanasios Vidalis, and Dimitrios Tzovaras	

Severe Neglect	and Computer-Based Home Training: A Case Study	329
Inge Linda	Wilms	

Industrial, Safety and Military Applications

Spatial Augmented Reality in Collaborative Design Training: Articulation between I-Space, We-Space and Space-Between Samia Ben Rajeb and Pierre Leclercq	343
Passenger Ship Evacuation – Design and Verification Luis Guarin, Yasmine Hifi, and Dracos Vassalos	354
Evaluation of User Experience Goal Fulfillment: Case Remote Operator Station	366
Increasing the Transparency of Unmanned Systems: Applications of Ecological Interface Design Ryan Kilgore and Martin Voshell	378
Collaborative Visualization of a Warfare Simulation Using a Commercial Game Engine	390
VELOS: Crowd Modeling for Enhanced Ship Evacuation Analysis Konstantinos V. Kostas, Alexandros-Alvertos Ginnis, Constantinos G. Politis, and Panagiotis D. Kaklis	402
Applying Augmented Reality to the Concept Development Stage of the Total Design Methodology Gordon M. Mair, Andrew Robinson, and John Storr	414
Authoring of Automatic Data Preparation and Scene Enrichment for Maritime Virtual Reality Applications Benjamin Mesing and Uwe von Lukas	426
AR-Based Vehicular Safety Information System for Forward Collision Warning	435
An Augmented Reality Framework for Supporting and Monitoring Operators during Maintenance Tasks <i>Guido Maria Re and Monica Bordegoni</i>	443

Using VR for Complex Product Design	455
Loukas Rentzos, Charalampos Vourtsis, Dimitris Mavrikios, and	
George Chryssolouris	
Maritime Applications of Augmented Reality – Experiences	
and Challenges	465
Uwe von Lukas, Matthias Vahl, and Benjamin Mesing	
Another Techen	477
Author Index	411

Table of Contents – Part I

Interaction Devices, Displays and Techniques in VAMR

Classification of Interaction Techniques in the 3D Virtual Environment on Mobile Devices Eliane Balaa, Mathieu Raynal, Youssef Bou Issa, and Emmanuel Dubois	3
Multimodal Interfaces and Sensory Fusion in VR for Social Interactions Esubalew Bekele, Joshua W. Wade, Dayi Bian, Lian Zhang, Zhi Zheng, Amy Swanson, Medha Sarkar, Zachary Warren, and Nilanjan Sarkar	14
Multi-modal Interaction System to Tactile Perception Lorenzo Cavalieri, Michele Germani, and Maura Mengoni	25
Principles of Dynamic Display Aiding Presence in Mixed Reality Space Design Inkyung Choi and Ji-Hyun Lee	35
Combining Multi-Sensory Stimuli in Virtual Worlds – A Progress Report Julia Fröhlich and Ipke Wachsmuth	44
R-V Dynamics Illusion: Psychophysical Influence on Sense of Weight by Mixed-Reality Visual Stimulation of Moving Objects Satoshi Hashiguchi, Yohei Sano, Fumihisa Shibata, and Asako Kimura	55
Expansion of the Free Form Projection Display Using a Hand-Held Projector	65
Study of an Interactive and Total Immersive Device with a Personal 3D Viewer and Its Effects on the Explicit Long-Term Memories of the Subjects	75
Research and Simulation on Virtual Movement Based on Kinect Qi Luo and Guohui Yang	85
A Natural User Interface for Navigating in Organized 3D Virtual Contents	93

Requirements for Virtualization of AR Displays within VR Environments	105
Erik Steindecker, Ralph Stelzer, and Bernhard Saske	
Robot Behavior for Enhanced Human Performance and Workload Grace Teo and Lauren E. Reinerman-Jones	117
Designing Virtual and Augmented Environments	
Subjective-Situational Study of Presence Nataly Averbukh	131
Development of a Squad Level Vocabulary for Human-Robot	100
Interaction Daniel Barber, Ryan W. Wohleber, Avonie Parchment, Florian Jentsch, and Linda Elliott	139
Towards an Interaction Concept for Efficient Control of Cyber-Physical	1.40
Systems Ingo Keller, Anke Lehmann, Martin Franke, and Thomas Schlegel	149
3D Design for Augmented Reality Ivar Kjellmo	159
Don't Walk into Walls: Creating and Visualizing Consensus Realities for Next Generation Videoconferencing Nicolas H. Lehment, Philipp Tiefenbacher, and Gerhard Rigoll	170
Transparency in a Human-Machine Context: Approaches for Fostering Shared Awareness/Intent Joseph B. Lyons and Paul R. Havig	181
Delegation and Transparency: Coordinating Interactions So Information Exchange Is No Surprise Christopher A. Miller	191
Trust and Consequences: A Visual Perspective Emrah Onal, John O'Donovan, Laura Marusich, Michael S. Yu, James Schaffer, Cleotilde Gonzalez, and Tobias Höllerer	203
Choosing a Selection Technique for a Virtual Environment Danilo Souza, Paulo Dias, and Beatriz Sousa Santos	215
Augmented Reality Evaluation: A Concept Utilizing Virtual Reality Philipp Tiefenbacher, Nicolas H. Lehment, and Gerhard Rigoll	226

Avatars and Virtual Characters

Good Enough Yet? A Preliminary Evaluation of Human-Surrogate Interaction Julian Abich IV, Lauren E. Reinerman-Jones, Gerald Matthews, Gregory F. Welch, Stephanie J. Lackey, Charles E. Hughes, and Arjun Nagendran	239
A Design Methodology for Trust Cue Calibration in Cognitive Agents Ewart J. de Visser, Marvin Cohen, Amos Freedy, and Raja Parasuraman	251
Effects of Gender Mapping on the Perception of Emotion from Upper Body Movement in Virtual Characters Maurizio Mancini, Andrei Ermilov, Ginevra Castellano, Fotis Liarokapis, Giovanna Varni, and Christopher Peters	263
AR Navigation System Using Interaction with a CG Avatar Hirosuke Murata, Maiya Hori, Hiroki Yoshimura, and Yoshio Iwai	274
Virtual Humans for Interpersonal and Communication Skills' Training in Crime Investigations	282
The Avatar Written upon My Body: Embodied Interfaces and User Experience	293
How Does Varying Gaze Direction Affect Interaction between a Virtual Agent and Participant in an On-Line Communication Scenario? Adam Qureshi, Christopher Peters, and Ian Apperly	305
Developing Virtual and Augmented Environments	
An Image Based Approach to Hand Occlusions in Mixed Reality Environments	319
Assembly of the Virtual Model with Real Hands Using Augmented Reality Technology Poonpong Boonbrahm and Charlee Kaewrat	329
Future Media Internet Technologies for Digital Domes Dimitrios Christopoulos, Efstathia Hatzi, Anargyros Chatzitofis, Nicholas Vretos, and Petros Daras	339

Fast and Accurate 3D Reproduction of a Remote Collaboration Environment	351
From Image Inpainting to Diminished Reality Norihiko Kawai, Tomokazu Sato, and Naokazu Yokoya	363
A Semantically Enriched Augmented Reality Browser Tamás Matuszka, Sándor Kámán, and Attila Kiss	375
Mobile Augmentation Based on Switching Multiple Tracking Method Ayaka Miyagi, Daiki Yoshihara, Kei Kusui, Asako Kimura, and Fumihisa Shibata	385
Hand Tracking with a Near-Range Depth Camera for Virtual Object Manipulation in an Wearable Augmented Reality Gabyong Park, Taejin Ha, and Woontack Woo	396
Matching Levels of Task Difficulty for Different Modes of Presentation in a VR Table Tennis Simulation by Using Assistance Functions and Regression Analysis Daniel Pietschmann and Stephan Rusdorf	406
A Pen Based Tool for Annotating Planar Objects Satoshi Yonemoto	418
Author Index	429