CONTENTS

Preface

xν

Part I Circuits and Models

1	Intr	oduction	3		
	1.1	Microelectronics	3		
	1.2	5			
	1.3	6			
	1.4 Design of Microelectronic Circuits				
	1.5	Computer-Aided Synthesis and Optimization	14		
		1.5.1 Circuit Models	15		
		1.5.2 Synthesis	15		
		1.5.3 Optimization	21		
	1.6	Organization of the Book	27		
	1.7	Related Problems	28		
		1.7.1 A Closer Look at Physical Design Problems	30		
		1.7.2 Computer-Aided Simulation	31		
		1.7.3 Computer-Aided Verification	32		
		1.7.4 Testing and Design for Testability	33		
	1.8 Synthesis and Optimization:				
		A Historic Perspective	33		
	1.9	References	35		
2	Bac	ckground	36		
	2.1	Notation	36		
	2.2	Graphs	37		
		2.2.1 Undirected Graphs	38		
		2.2.2 Directed Graphs	39		
		2.2.3 Perfect Graphs	40		
	2.3	Combinatorial Optimization	42		
		2.3.1 Decision and Optimization Problems	42		
		2.3.2 Algorithms	43		

		2.3.3	Tractable and Intractable Problems	44
		2.3.4	Fundamental Algorithms	46
	2.4	Graph (Optimization Problems and Algorithms	53
		2.4.1	The Shortest and Longest Path Problems	54
		2.4.2	Vertex Cover	59
		2.4.3	Graph Coloring	61
		2.4.4	Clique Covering and Clique Partitioning	64
	2.5	Boolear	n Algebra and Applications	67
		2.5.1	Boolean Functions	68
		2.5.2	Representations of Boolean Functions	72
		2.5.3	Satisfiability and Cover	85
	2.6	Perspec	ctives	94
	2.7	Referen	nces	95
	2.8	Problem	ns	96
3	Har	dware	Modeling	97
	3.1	Introdu	ction	97
	3.2	Hardwa	are Modeling Languages	98
		3.2.1	Distinctive Features of Hardware Languages	100
		3.2.2	Structural Hardware Languages	102
		3.2.3	Behavioral Hardware Languages	103
		3.2.4	HDLs Used for Synthesis	108
	3.3	Abstrac	ct Models	115
		3.3.1	Structures	115
		3.3.2	Logic Networks	116
		3.3.3	State Diagrams	118
		3.3.4	Data-flow and Sequencing Graphs	119
	3.4	Compil	lation and Behavioral Optimization	126
		3.4.1	Compilation Techniques	127
		3.4.2	Optimization Techniques	131
	3.5	Perspec	ctives	136
	3.6	Referen	nces	137
	3.7	Problem	ms	138

Part II Architectural-Level Synthesis and Optimization

4	Architectural Synthesis			141
	4.1	Introduction		141
	4.2	Circuit specifications for Architectural Synthesis		143
		4.2.1	Resources	143
		4.2.2	Constraints	145
	4.3	The Fu	undamental Architectural Synthesis Problems	146
		4.3.1	The Temporal Domain: Scheduling	146
		4.3.2	The Spatial Domain: Binding	150
		4.3.3	Hierarchical Models	153
		4.3.4	The Synchronization Problem	154
	4.4	Area a	and Performance Estimation	155
		4.4.1	Resource-Dominated Circuits	156

225

	4.4.2	General Circuits	156		
4.5	Strategies for Architectural Optimization				
	4.5.1	Area/Latency Optimization	159		
	4.5.2	Cycle-Time/Latency Optimization	160		
	4.5.3	Cycle-Time/Area Optimization	163		
4.6	Data-P	ath Synthesis	163		
4.7	Contro	I-Unit Synthesis	166		
	4.7.1	Microcoded Control Synthesis for Non-Hierarchical			
		Sequencing Graphs with Data-Independent Delay			
		Operations	167		
	4.7.2	Microcoded Control Optimization Techniques*	168		
	4.7.3	Hard-Wired Control Synthesis for Non-Hierarchical			
		Sequencing Graphs with Data-Independent Delay			
		Operations	170		
	4.7.4	Control Synthesis for Hierarchical Sequencing Graphs			
		with Data-Independent Delay Operations	171		
	4.7.5	Control Synthesis for Unbounded-Latency Sequencing			
		Graphs*	174		
4.8	Synthe	sis of Pipelined Circuits	178		
4.9	Perspe	ctives	181		
4.10	Refere	nces	182		
4.11	Proble	ms	183		
Sch	edulin	g Algorithms	185		
5.1	Introdu	uction	185		
5.2	A Mod	lel for the Scheduling Problems	186		
5.3	Schedu	ling without Resource Constraints	187		
	5.3.1	Unconstrained Scheduling: The ASAP Scheduling			
		Algorithm	188		
	5.3.2	Latency-Constrained Scheduling:			
		The ALAP Scheduling Algorithm	188		
	5.3.3	Scheduling Under Timing Constraints	190		
	5.3.4	Relative Scheduling*	193		
5.4	Schedu	ling with Resource Constraints	198		
	5.4.1	The Integer Linear Programming Model	198		
	5.4.2	Multiprocessor Scheduling and Hu's Algorithm	202		
	5.4.3	Heuristic Scheduling Algorithms:			
		List Scheduling	207		
	5.4.4	Heuristic Scheduling Algorithms: Force-directed			
		Scheduling*	211		
	5.4.5	Other Heuristic Scheduling Algorithms*	215		
5.5	Schedu	ling Algorithms for Extended Sequencing Models*	216		
	5.5.1	Scheduling Graphs with Alternative Paths*	216		
5.6	Schedu	ling Pipelined Circuits*	218		
	5.6.1	Scheduling with Pipelined Resources*	220		
	5.6.2	Functional Pipelining*	222		
	5.6.3	Loop Folding*	224		

5.7 Perspectives

5

	5.8 5.9	References Problems	225 226		
6	Resource Sharing and Binding				
	6.1	Introduction	229		
	6.2	Sharing and Binding for Resource-Dominated Circuits	230		
		6.2.1 Resource Sharing in Non-Hierarchical Sequencing Graphs	233		
		6.2.2 Resource Sharing in Hierarchical Sequencing Graphs	237		
		6.2.3 Register Sharing	240		
		6.2.4 Multi-Port Memory Binding	243		
		6.2.5 Bus Sharing and Binding	245		
	6.3	Sharing and Binding for General Circuits*	245		
		6.3.1 Unconstrained Minimum-Area Binding*	246		
		6.3.2 Performance-Constrained and Performance-Directed			
		Binding*	249		
		6.3.3 Considerations for Other Binding Problems*	250		
	6.4	Concurrent Binding and Scheduling	250		
	6.5	Resource Sharing and Binding for Non-Scheduled Sequencing			
		Graphs	252		
		6.5.1 Sharing and Binding for Non-Scheduled Models	253		
		6.5.2 Size of the Design Space*	255		
	6.6	The Module Selection Problem	257		
	6.7	Resource Sharing and Binding for Pipelined Circuits	260		
	6.8	Sharing and Structural Testability*	262		
	6.9	Perspectives	263		
	6.10	References	264		
	6.11	Problems	265		

Part III Logic-Level Synthesis and Optimization

7	Two	o-Leve	l Combinational Logic Optimization	269
	7.1	Introdu	action	269
	7.2	Logic	Optimization Principles	270
		7.2.1	Definitions	272
		7.2.2	Exact Logic Minimization	277
		7.2.3	Heuristic Logic Minimization	283
		7.2.4	Testability Properties	286
	7.3	Operat	tions on Two-Level Logic Covers	288
		7.3.1	The Positional-Cube Notation	288
		7.3.2	Functions with Multiple-Valued Inputs	289
		7.3.3	List-Oriented Manipulation	291
		7.3.4	The Unate Recursive Paradigm	294
	7.4	Algori	thms for Logic Minimization	304
		7.4.1	Expand	304
		7.4.2	Reduce*	308
		7.4.3	Irredundant*	310
		7.4.4	Essentials*	313
		7.4.5	The ESPRESSO Minimizer	315

	7.5	Symboli	ic Minimization and Encoding Problems	318
		7.5.1	Input Encoding	319
		7.5.2	Output Encoding*	327
		7.5.3	Output Polarity Assignment	333
	7.6	Minimiz	zation of Boolean Relations*	334
	7.7	Perspect	tives	338
	7.8	Reference	ces	339
	7.9	Problem	IS	341
8	Mu	tiple-L	evel Combinational Logic Optimization	343
	8.1	Introduc	tion	343
	8.2	Models	and Transformations for Combinational Networks	345
		8.2.1	Optimization of Logic Networks	348
		8.2.2	Transformations for Logic Networks	350
		8.2.3	The Algorithmic Approach	
			to Multiple-Level Logic Optimization	356
	8.3	The Alg	ebraic Model	360
		8.3.1	Substitution	363
		8.3.2	Extraction and Algebraic Kernels	365
		8.3.3	Decomposition	378
	8.4	The Boo	blean Model	380
		8.4.1	Don't Care Conditions and Their Computation	380
		8.4.2	Boolean Simplification and Substitution	396
		8.4.3	Other Optimization Algorithms Using Boolean	
	~ ~		Transformations*	408
	8.5	Synthesi	is of Testable Networks	415
	8.6	Algorith	ims for Delay Evaluation and Optimization	418
		8.6.1	Delay Modeling	418
		8.6.2	Detection of False Paths*	421
	07	8.0.3 Dula Da	Algorithms and Transformations for Delay Optimization	426
	8./ 0.0	Rule-Ba	sed Systems for Logic Optimization	433
	ð.ð	Perspect	ives	435
	0.9 0 10	Drohlam	ces	430
~	0.10 C	Problem	s 	439
9	Seq	uential	Logic Optimization	441
	9.1	Introduc	tion	441
	9.2	Sequenti	al Circuit Optimization Using State-Based Models	443
		9.2.1	State Minimization	444
		9.2.2	State Encoding	449
		9.2.3	Other Optimization Methods and Recent Developments*	455
	9.3	Sequenti	al Circuit Optimization Using Network Models	458
		9.3.1	Retiming	462
		9.3.2	Synchronous Circuit Optimization	475
		0.2.2	by Retiming and Logic Transformations	475
	0.4	9.3.3 Implicit	Lon I Care Conditions in Synchronous Networks	481
	9.4		State Extraction	490
		9.4.1	Just Extraction Implicit State Minimization*	491
	05	7.4.2 Testabili	ty Considerations for Synchronous Circuits	494
	2.5	I CSLAUIII	ty considerations for synemonous circuits	493

	9.6	Perspectives	498
	9.7	References	500
	9.8	Problems	502
10	Cell	-Library Binding	504
	10.1	Introduction	504
	10.2	Problem Formulation and Analysis	505
	10.3	Algorithms for Library Binding	509
		10.3.1 Covering Algorithms Based on Structural Matching	512
		10.3.2 Covering Algorithms Based on Boolean Matching	526
		10.3.3 Covering Algorithms and Polarity Assignment	530
		10.3.4 Concurrent Logic Optimization and Library Binding*	533
		10.3.5 Testability Properties of Bound Networks	536
	10.4	Specific Problems and Algorithms for Library Binding	537
		10.4.1 Look-Up Table FPGAs	538
		10.4.2 Anti-Fuse-Based FPGAs	541
	10.5	Rule-Based Library Binding	544
		10.5.1 Comparisons of Algorithmic and Rule-Based Library	
		Binding	545
	10.6	Perspectives	546
	10.7	References	546
	10.8	Problems	548

Part IV Conclusions

l	State of the Art and Future Trends			551
	11.1	.1 The State of the Art in Synthesis		551
	11.2	Synthesi	s Systems	553
		11.2.1	Production-Level Synthesis Systems	554
		11.2.2	Research Synthesis Systems	555
		11.2.3	Achievements and Unresolved Issues	558
	11.3	The Gro	with of Synthesis in the Near and Distant Future	559
		11.3.1	System-Level Synthesis	561
		11.3.2	Hardware-Software Co-Design	562
	11.4	Envoy	-	565
	11.5	Reference	ces	565
	Inde	x		567

-