Contents

•

٠

ĸ

,

Preface			<i>page</i> xi
1	Factorials and Binomial Coefficients		1
	1.1	Introduction	1
	1.2	Prime Numbers and the Factorization of n!	3
	1.3	The Role of Symbolic Languages	7
	1.4	The Binomial Theorem	10
	1.5	The Ascending Factorial Symbol	16
	1.6	The Integration of Polynomials	19
2	The Method of Partial Fractions		25
	2.1	Introduction	25
	2.2	An Elementary Example	30
	2.3	Wallis' Formula	32
	2.4	The Solution of Polynomial Equations	36
	2.5	The Integration of a Biquadratic	44
3	A Sim	ple Rational Function	48
	3.1	Introduction	48
	3.2	Rational Functions with a Single Multiple Pole	49
	3.3	An Empirical Derivation	49
	3.4	Scaling and a Recursion	51
	3.5	A Symbolic Evaluation	53
	3.6	A Search in Gradshteyn and Ryzhik	55
	3.7	Some Consequences of the Evaluation	56
	3.8	A Complicated Integral	58
4	A Review of Power Series		61
	4.1	Introduction	61
	4.2	Taylor Series	65
	4.3	Taylor Series of Rational Functions	67

73 5 The Exponential and Logarithm Functions 73 5.1 Introduction 74 5.2 The Logarithm 81 5.3 Some Logarithmic Integrals 84 5.4 The Number e 89 5.5 Arithmetical Properties of e 91 5.6 The Exponential Function 92 5.7 Stirling's Formula 97 5.8 Some Definite Integrals 99 5.9 Bernoulli Numbers 103 5.10 Combinations of Exponentials and Polynomials 105 6 The Trigonometric Functions and π 105 6.1 Introduction The Basic Trigonometric Functions and the Existence 6.2 106 of π 111 6.3 Solution of Cubics and Ouartics by Trigonometry 112 Quadratic Denominators and Wallis' Formula 6.4 117 6.5 Arithmetical Properties of π 118 Some Expansions in Taylor Series 6.6 124 A Sequence of Polynomials Approximating $\tan^{-1} x$ 6.7 126 6.8 The Infinite Product for $\sin x$ 129 6.9 The Cotangent and the Riemann Zeta Function 133 6.10 The Case of a General Quadratic Denominator 6.11 Combinations of Trigonometric Functions and 135 **Polynomials** 137 7 A Quartic Integral 137 7.1 Introduction 7.2 Reduction to a Polynomial 139 A Triple Sum for the Coefficients 7.3 143 7.4 The Quartic Denominators: A Crude Bound 144 Closed-Form Expressions for $d_l(m)$ 7.5 145 7.6 A Recursion 147 7.7 The Taylor Expansion of the Double Square Root 150 7.8 Ramanujan's Master Theorem and a New Class of Integrals 151 7.9 A Simplified Expression for $P_m(a)$ 153 7.10 The Elementary Evaluation of $N_{i,4}(a;m)$ 159 The Expansion of the Triple Square Root 7.11 160 8 The Normal Integral 162 8.1 Introduction 162 8.2 Some Evaluations of the Normal Integral

164

Contents

viii

		Contents	ix
		Formulae from Gradshteyn and Rhyzik (G & R)	171
~		An Integral of Laplace	171
9		s Constant	173
	9.1		173
	9.2		174
	9.3	6	176
	9.4	6	180
	9.5	•	183
		The Irrationality of γ	184
10		an Integrals: The Gamma and Beta Functions	186
	10.1	Introduction	186
	10.2	The Beta Function	192
	10.3		193
		Legendre's Duplication Formula	195
		An Example of Degree 4	198
	10.6	1 00	201
	10.7		204
	10.8	Formulas from Gradshteyn and Rhyzik (G & R)	206
	10.9	1	207
	10.10		210
	10.11		212
		Integral Representations for $\psi(x)$	215
	10.13	1	217
11		emann Zeta Function	219
	11.1	Introduction	219
	11.2	An Integral Representation	222
	11.3	Several Evaluations for $\zeta(2)$	225
	11.4	Apery's Constant: $\zeta(3)$	231
	11.5	Apery Type Formulae	235
12	-	thmic Integrals	237
		Polynomial Examples	238
	12.2	Linear Denominators	239
	12.3	Some Quadratic Denominators	241
	12.4	Products of Logarithms	244
	12.5	The Logsine Function	245
13	A Mas	ter Formula	250
	13.1	Introduction	250
	13.2	Schlomilch Transformation	251
	13.3	Derivation of the Master Formula	252
	13.4	Applications of the Master Formula	253
	13.5	Differentiation Results	257

Contents

ı.

;

13.6	The Case $a = 1$	258
13.7	A New Series of Examples	263
	New Integrals by Integration	266
	New Integrals by Differentiation	268
	dix: The Revolutionary WZ Method	271
A.1	Introduction	271
A.2	An Introduction to WZ Methods	272
A.3	A Proof of Wallis' Formula	273
Bibliograp	276	
Index	299	