Contents

Preface XIII

List of Contributors XV

1 An Introduction to Block Copolymer Applications: State-of-the-Art and Future Developments 1
 Sébastien Lecommandoux, Massimo Lazzari, and Guojun Liu

References 6

2 Guidelines for Synthesizing Block Copolymers 9
 Daniel Taton and Yves Gnanou

2.1 Introduction 9

2.2 Free-radical Polymerization 13

2.3 Coupling Reactions of Homopolymers 13

2.4 Sequential Anionic Polymerization 14

2.5 Sequential Group Transfer Polymerization 16

2.6 Sequential Cationic Polymerization 17

2.7 Non-radical Metal-catalyzed Polymerization 18

2.8 Controlled Radical Polymerization 19

2.8.1 Atom Transfer Radical Polymerization (ATRP) 20

2.8.2 Nitroxide-mediated Polymerization (NMP) 23

2.8.3 Reversible Addition Fragmentation Chain Transfer (the RAFT Process) 25

2.9 Switching from One Polymerization Mechanism to Another 27

2.10 Use of "Dual" Initiators in Concurrent Polymerization Mechanisms 29

2.11 Chemical Modification of Pre-formed Block Copolymers 30

2.12 Methods for the Synthesis of Block Copolymers with a Complex Architecture 31

2.13 Conclusion 33

References 35
3 Block Copolymer Vesicles 39
Alessandro Napoli, Diana Sebők, Alex Senti, and Wolfgang Meier

3.1 Introduction 39
3.2 Chemistry of Vesicle-forming Block Copolymers 41
3.3 Block Copolymer Vesicle Formation in Water 46
3.4 Block Copolymer Vesicle Formation in Organic Solvents 48
3.5 Properties of Polymer Vesicles 51
3.5.1 Morphology and Size of Polymer Vesicles 51
3.5.2 Membrane Properties 53
3.5.2.1 Polymer Membrane Thickness 53
3.5.2.2 Mechanical Properties of Polymer Vesicles 54
3.5.2.3 Adhesion of Polymer Vesicles 57
3.5.2.4 Fusion and Fission of Polymer Vesicles 58
3.6 Functional Polymer Vesicles 59
3.7 Biohybrid Polymer Vesicles 60
3.7.1 Polypeptide-based Copolymer Vesicles 60
3.7.2 Protein Incorporation into Polymer Vesicles 62
3.8 Potential Applications of Polymer Vesicles 64
3.9 Concluding Remarks 66

References 66

4 Block Copolymer Micelles for Drug Delivery in Nanoscience 73
Younsoo Bae, Horacio Cabral, and Kazunori Kataoka

References 87

5 Stimuli-responsive Block Copolymer Assemblies 91
Jean-François Gohy

5.1 Introduction 91
5.2 Stimuli-sensitive Micellization 92
5.2.1 Temperature-sensitive Micellization 93
5.2.2 pH-sensitive Micellization 95
5.2.3 Ionic Strength Sensitive Micellization 98
5.3 Stimuli-responsive Micelles 100
5.4 Multi-responsive Micellar Systems 103
5.5 Stimuli-responsive Thin Films from Block Copolymers 106
5.6 Stimuli-responsive Block Copolymers in the Bulk 109
5.7 Conclusions and Outlook 112

References 114

6 Self-assembly of Linear Polypeptide-based Block Copolymers 117
Sébastien Lecommandoux, Harm-Anton Klok, and Helmut Schlaad

6.1 Introduction 117
6.2 Solution Self-assembly of Polypeptide-based Block Copolymers 119
6.2.1 Aggregation of Polypeptide-based Block Copolymers 119
6.2.1.1 Polypeptide Hybrid Block Copolymers 119
6.2.1.2 Block Copolyamides 123
6.2.2 Polypeptide-based Hydrogels 124
6.2.3 Organic/Inorganic Hybrid Structures 124
6.3 Solid-state Structures of Polypeptide-based Block Copolymers 126
6.3.1 Diblock Copolymers 126
6.3.1.1 Polydiene-based Diblock Copolymers 126
6.3.1.2 Polystyrene-based Diblock Copolymers 127
6.3.1.3 Polyether-based Diblock Copolymers 131
6.3.1.4 Polyester-based Diblock Copolymers 133
6.3.1.5 Diblock Copolyamides 133
6.3.2 Triblock Copolymers 134
6.3.2.1 Polydiene-based Triblock Copolymers 134
6.3.2.2 Polystyrene-based Triblock Copolymers 138
6.3.2.3 Polysiloxane-based Triblock Copolymers 139
6.3.2.4 Polyether-based Triblock Copolymers 140
6.3.2.5 Miscellaneous 144
6.4 Summary and Outlook 146

References 147

7 Synthesis, Self-assembly and Applications of Polyferrocenylsilane (PFS) Block Copolymers 151
Xiaosong Wang, Mitchell A. Winnik, and Ian Manners

7.1 Introduction 151
7.2 Synthesis of PFS Block Copolymers 152
7.3 Solution Self-assembly of PFS Block Copolymers 158
7.4 Shell Cross-linked Nanocylinders and Nanotubes 161
7.5 Self-assembly of PFS Block Copolymers in the Solid State 164
7.6 Summary 166
References 167

8 Supramolecular Block Copolymers Containing Metal–Ligand Binding Sites: From Synthesis to Properties 169
Khaled A. Aamer, Raja Shunmugan, and Gregory N. Tew

8.1 Introduction 169
8.2 Block Copolymers with Chain-end Containing Metal Complexes 172
8.2.1 Metal Complexes in the Center of Star Polymers 172
8.2.2 Supramolecular Diblock Copolymers Connected by Metal Complexes 174
8.3 Block Copolymers with Side-chain Metal Complexes in One Block 178
8.3.1 Polymerizing Pre-formed Metal Complexes 178
8.3.2 Block Copolymers Containing Free Metal–Ligand Side-chains 180
8.3.2.1 Polymerization of Metal–Ligand Containing Monomers 180
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.1 Well Defined PAN Polymers and Copolymers</td>
<td>259</td>
</tr>
<tr>
<td>11.2.2 Carbon Films from Phase-separated Block Copolymers</td>
<td>260</td>
</tr>
<tr>
<td>11.2.3 Carbon Nanoobjects from Water-soluble Precursors</td>
<td>265</td>
</tr>
<tr>
<td>11.2.4 Nanoporous Carbon from Block Copolymers Using Silica as an</td>
<td>266</td>
</tr>
<tr>
<td>Auxiliary Component</td>
<td></td>
</tr>
<tr>
<td>11.2.5 Nanoporous Carbon from Phase-separated Block Copolymers</td>
<td>268</td>
</tr>
<tr>
<td>11.2.6 Carbons Synthesized Using Other Block Copolymers</td>
<td>270</td>
</tr>
<tr>
<td>11.3 Conclusion</td>
<td>271</td>
</tr>
<tr>
<td>References</td>
<td>272</td>
</tr>
<tr>
<td>12 Block Copolymers at Interfaces</td>
<td>275</td>
</tr>
<tr>
<td>Mark Geoghegan and Richard A. L. Jones</td>
<td></td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>275</td>
</tr>
<tr>
<td>12.2 Block Copolymer Films</td>
<td>277</td>
</tr>
<tr>
<td>12.3 Block Copolymers on Heterogeneous Surfaces</td>
<td>278</td>
</tr>
<tr>
<td>12.4 Environmental Control of Block Copolymer Films</td>
<td>279</td>
</tr>
<tr>
<td>12.5 Block Copolymer Brushes</td>
<td>282</td>
</tr>
<tr>
<td>12.6 Surface Regeneration</td>
<td>286</td>
</tr>
<tr>
<td>12.7 Conclusions and Outlook</td>
<td>286</td>
</tr>
<tr>
<td>References</td>
<td>287</td>
</tr>
<tr>
<td>13 Block Copolymers as Templates for the Generation of Mesostructured</td>
<td>291</td>
</tr>
<tr>
<td>Inorganic Materials</td>
<td></td>
</tr>
<tr>
<td>Bernd Smarsly and Markus Antonietti</td>
<td></td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>291</td>
</tr>
<tr>
<td>13.2 General Mechanism</td>
<td>292</td>
</tr>
<tr>
<td>13.3 Details of the BC Templating Mechanism</td>
<td>298</td>
</tr>
<tr>
<td>13.4 Crystalline, Mesoporous Metal Oxides</td>
<td>299</td>
</tr>
<tr>
<td>13.5 Mesoporous Metals</td>
<td>304</td>
</tr>
<tr>
<td>13.6 Conclusion and Outlook</td>
<td>304</td>
</tr>
<tr>
<td>References</td>
<td>305</td>
</tr>
<tr>
<td>14 Mesostructured Polymer–Inorganic Hybrid Materials from Blocked</td>
<td>309</td>
</tr>
<tr>
<td>Macromolecular Architectures and Nanoparticles</td>
<td></td>
</tr>
<tr>
<td>Marleen Kamperman and Ulrich Wiesner</td>
<td></td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>309</td>
</tr>
<tr>
<td>14.2 AB Diblock Copolymers as Structure-directing Agents for</td>
<td></td>
</tr>
<tr>
<td>Aluminosilicate Mesostructures</td>
<td>310</td>
</tr>
<tr>
<td>14.2.1 Formation Mechanisms</td>
<td>313</td>
</tr>
<tr>
<td>14.2.2 Flow-induced Alignment of Mesostructured Block Copolymer–Sol</td>
<td>316</td>
</tr>
<tr>
<td>Nanoparticle Co-assemblies</td>
<td></td>
</tr>
<tr>
<td>14.3 Generalization to Other Blocked Macromolecular Amphiphiles as</td>
<td></td>
</tr>
<tr>
<td>Structure-directing Agents for Mesostructured Materials</td>
<td>319</td>
</tr>
</tbody>
</table>
14.4 Generalization to Other Inorganic Materials Systems 322
14.4.1 Mesoporous Aluminosilicate Materials with Superparamagnetic γ-Fe₂O₃ Particles Embedded in the Walls 322
14.4.2 Ordered Mesoporous Ceramics Stable up to 1500 °C from Diblock Copolymer Mesophases 324
14.5 Generalization from Bulk Mesostructured Hybrids to Mesostructured Thin Films 328
14.6 Conclusions 331
References 332

15 Block Ionomers for Fuel Cell Application 337
Olivier Diat and Gérard Gebel
15.1 Introduction 337
15.2 Definitions and Investigations 342
15.3 Polymer Modification 344
15.3.1 Post-sulfonation 344
15.3.2 Grafting 345
15.3.3 Blends 346
15.4 Copolymerization of Functionalized Monomers 347
15.4.1 Main-chain Type Co-ionomer 347
15.4.1.1 Sulfonated Polyimides 347
15.4.1.2 Polyarylene Systems 351
15.4.2 "Side Chain" Co-ionomers 353
15.5 Di- and Triblock Ionomers 357
15.6 Conclusion 362
References 363

16 Structure, Properties and Applications of ABA and ABC Triblock Copolymers with Hydrogenated Polybutadiene Blocks 367
Vittoria Balsamo, Arnaldo Tomás Lorenzo, Alejandro J. Müller, Sergio Corona-Galván, Luisa M. Fraga Trillo, and Valentín Ruiz Santa Quiteria
16.1 Introduction 367
16.2 Applications of SEBS Triblock Copolymers 371
16.2.1 Adhesives, Sealants and Coatings 372
16.2.2 Bitumen Modification 373
16.2.3 Compounding and Plastic Modification 375
16.2.4 Miscellaneous Applications 377
16.2.4.1 Gels and Nanocomposites 377
16.2.4.2 Medical Applications 378
16.2.5 Future Trends 379
16.3 Semicrystalline Triblock Copolymers with One or More HPB Blocks 379
16.3.1 Semicrystalline ABA Triblock Copolymers 380
16.3.2 Semicrystalline ABC Triblock Copolymers 381
16.4 Conclusions 387
References 388

17 Basic Understanding of Phase Behavior and Structure of Silicone Block
Copolymers and Surfactant–Block Copolymer Mixtures 391
Carlos Rodriguez, Arturo López-Quintela, Md. Hemayet Uddin,
Kenji Aramaki, and Hironobu Kunieda†
17.1 Introduction 391
17.2 General Aspects of Phase Behavior and Liquid Crystal Phases 393
17.3 Phase Behavior and Microstructure of SiₘC₃EOₙ Melts 395
17.4 Phase Behavior and Microstructure SiₘC₃EOₙ in Water 400
17.4.1 Phase Diagrams of Water–SiₘC₃EOₙ Systems as a Function of
Temperature 400
17.4.2 Phase Diagrams of Water–SiₘC₃EOₙ Systems as a Function of PEO
Chain Length 402
17.4.3 Phase Diagram of Water–SiₘC₃EO₅₁₆ System as a Function of PDMS
Chain Length 403
17.4.4 Effect of PEO and PDMS Chain Lengths on the Effective Cross-sectional
Area per Copolymer Molecule, aᵦ 404
17.5 Phase Behavior of SiₘC₃EOₙ in Non-polar Oil 406
17.6 Phase Behavior of SiₘC₃EOₙ in Non-aqueous Polar Solvents 408
17.7 Mixing of Poly(oxyethylene)–Poly(dimethylsiloxane) Copolymer and
Non-ionic Surfactant in Water 410
17.8 Conclusions and Outlook 415
References 415

Subject Index 419