Contents

Table of Bond Graph Elements inside front cover
Preface
To the Instructorxvii
Chapter 1 INTRODUCTION
1.1 Example; 1.2 Modeling and Engineering Science; 1.3 Modeling Languages; 1.4 Modeling for Control; 1.5 A Word to the Wise About Learning; 1.6 Treat- ment of Dimensions; 1.7 Treatment of Units; References
Chapter 2 SOURCE-LOAD SYNTHESIS
2.1 System Reticulation15
2.1.1 Case Study: Induction Motor as a Source; 2.1.2 Case Study: Water Sprin- kler System as a Load; 2.1.3 The Source-Load Synthesis: Case Study; 2.1.4 Summary
2.2 Generalized Forces and Velocities
2.2.1 Efforts and Flows; 2.2.2 Electric Conductors; 2.2.3 Longitudinal Mechan- ical Motion; 2.2.4 Incompressible Fluid Flow; 2.2.5 Rotational Motion; 2.2.6 Lateral Mechanical Motion; 2.2.7 Microbonds; 2.2.8 Analogies; 2.2.9 Summary
2.3 Generalized Sources, Sinks and Resistances
2.3.1 Independent-Effort and Independent-Flow Sources and Sinks; 2.3.2 General Sources and Sinks; 2.3.3 Linear Resistances; 2.3.4 Nonlinear Resistances; 2.3.5 Source-Load Synthesis; 2.3.6 Power Considerations; 2.3.7 Summary
2.4 Ideal Machines: Transformers and Gyrators
2.4.1 Ideal Machines; 2.4.2 Transformers; 2.4.3 Gyrators; 2.4.4 Mechanical De- vices Modeled as Transformers; 2.4.5 Electrical Transformers; 2.4.6 Transducers Modeled as Transformers; 2.4.7 Mechanical Devices Modeled as Gyrators; 2.4.8 Transducers Modeled as Gyrators; 2.4.9 Summary
2.5 Systems with Transformers and Gyrators
2.5.1 Cascaded Transformers; 2.5.2 Cascaded Gyrators; 2.5.3 Case Study of a Transformer Connecting a Source to a Load; 2.5.4 Second Case Study of a Transformer Connecting a Source to a Load; 2.5.5 Case Study of a Gyrator Connecting a Source to a Load; 2.5.6 Transmission Matrices [*] ; 2.5.7 Summary

viii	
Chapter 3 SIMPLE DYNAMIC MODELS	77
3.1 Compliance Energy Storage	77
3.1.1 Linear Springs and Energy; 3.1.2 The Generalized Linear Compliance; 3.1.3 Electric Circuit Compliance; 3.1.4 Linear Fluid Compliance Due to Grav- ity: 3.1.5 Fluid Compliance Due to Compressibility; 3.1.6 Summary	
3.2 Inertance Energy Storage	85
3.2.1 Mass, Momentum and Kinetic Energy; 3.2.2 The Generalized Linear Iner- tance; 3.2.3 Common Engineering Elements Modeled by Constant Inertances; 3.2.4 Tetrahedron of State*; 3.2.5 Summary	
3.3 Junctions	92
3.3.1 Junction Types; 3.3.2 Mechanical Constraints Modeled by 1-Junctions; 3.3.3 Electric Circuit Constraints Modeled by 1-Junctions; 3.3.4 Fluid Circuit Constraints Modeled by 1-Junctions; 3.3.5 Mechanical Constraints Modeled by 0-Junctions; 3.3.6 Electric and Fluid Circuit Constraints Modeled by 0- Junctions; 3.3.7 Simple IRC Models; 3.3.8 Summary	
3.4 Causality and Differential Equations	112
3.4.1 Operational Block Diagrams; 3.4.2 Causal Bond Graphs; 3.4.3 Junctions with Elements Having Uncoupled Behavior; 3.4.4 Junctions with Elements Hav-	

3.5 Nonlinear Resistances, Compliances and Inertances	127
3.5.1 Nonlinear Resistances; 3.5.2 Nonlinear Compliances; 3.5.3 Nonlinear Fluid Compliance Due to Gravity; 3.5.4 Nonlinear Compressibility Compliance; 3.5.5 Junctions with Multiple Bonded Compliances; 3.5.6 Nonlinear Inertances; 3.5.7 Kinetic and Potential Energies and Co-Energies; 3.5.8 Summary	
3.6 Numerical Simulation	138
3.6.1 State-Variable Differential Equations; 3.6.2 Simulation With ODE Rou- tines of MATLAB; 3.6.3 Simulation With Simulink [*] ; 3.6.4 Integration Algo- rithims; 3.6.5 Second-Order Runge-Kutta; 3.6.6 Fourth-Order Runge-Kutta;	

ing Coupled Behavior; 3.4.5 Writing Differential Equations; 3.4.6 Summary

3.6.7 Summary		
Chapter 4 ANALYSIS O	F LINEAR MODELS, PART 1	155
4.1 Linear Models and	Simulation	155
4.1.1 Superposition and 4.1.3 Operator Notation; 4.1.5 Transformation from Using MATLAB [®] ; 4.1.7 Simulation of Linear Mo	Linearity; 4.1.2 Linearity and Differential Equations; ; 4.1.4 Transformation from State-Space to Scalar Form; om Scalar to State-Space Form*; 4.1.6 Transformations 7 Sinulation of Linear Models Using MATLAB*; 4.1.8 odels Using Simulink*; 4.1.9 Summary	3 3 3
4.2 Common Functions	in Excitations and Responses	169
4.2.1 Exponential Functi	ions; 4.2.2 Singularity Functions; 4.2.3 Summary	
4.3 Direct Solutions of	Linear Differential Equations	174
4.3.1 The Homogeneous cients; 4.3.3 Application 4.3.5 Differentiation and	Solution; 4.3.2 The Method of Undetermined Coeffi- of Initial Conditions; 4.3.4 Solutions to Impulse Inputs: I Integration Properties; 4.3.6 Summary	

4.4.1 Decomposing Signals into a Sum of Steps; 4.4.2 Discrete Convolution; 4.4.3 Discrete Convolution by MATLAB; 4.4.4 Convolution Integrals; 4.4.5 Summary 4.5.1 Definition and Inverse; 4.5.2 The Derivative Relations; 4.5.3 Singularity Functions and Discontinuities; 4.5.4 Other Key Relations; 4.5.5 Finding Laplace Transforms of Output Variables; 4.5.6 Finding Inverse Transforms: Partial Fraction Expansions; 4.5.7 Initial and Final Value Theorems; 4.5.8 Development of the Laplace Transform from the Fourier Transform*: 4.5.9 Development of the Laplace Transform from the Convolution Integral*; 4.5.10 Summary 4.6.1 Responses of First-Order Models; 4.6.2 Responses of Second-Order Models to Initial Conditions; 4.6.3 Responses of Second-Order Models to Step and Impulse Excitations; 4.6.4 Step and Impulse Responses Using MATLAB; 4.6.5 Summary 4.7.1 Case Study with Linearization of a Resistance; 4.7.2 Linearization of a Function of One Variable; 4.7.3 Essential Nonlinearities; 4.7.4 Linearization of a Function of Two Variables; 4.7.5 Linearization of a First-Order Differential Equation; 4.7.6 Linearization of State-Variable Differential Equations; 4.7.7 Case Study with Three Different Types of Equilibria; 4.7.8 Summary 5.1.1 Simple Electric Circuits; 5.1.2 Fluid Circuits; 5.1.3 Mechanical Circuits; 5.1.4 Use of Energy Integrals; 5.1.5 Summary 5.2.1 Electric Circuits; 5.2.2 Fluid/Mechanical Circuits; 5.2.3 Losses in Positive Displacement Machines*; 5.2.4 Losses With DC Motor/Generators*; 5.2.5 Case Study with Source and Load*; 5.2.6 Two- and Three-Dimensional Geometric Constraints; 5.2.7 Case Study: Pulley System; 5.2.8 Model Structure from Energy Expressions: 5.2.9 Modeling Guidelines; 5.2.10 Tutorial Case Study; 5.2.11 Common Misconceptions; 5.2.12 Summary 5.3.1 Thevenin and Norton Equivalent Sources and Loads; 5.3.2 Passivity With Respect to a Point on a Characteristic*; 5.3.3 Truncation of Transformers and Gyrators Bonded to R, C or I Elements; 5.3.4 Reduction of Two-Pair Meshes; 5.3.5 Transmission Matrix Reduction of Steady-State Models*; 5.3.6 Summary 5.4.1 Reduction of Steady-State Models with a Single Source: Case Study; 5.4.2 Alternative Approaches to Reducing Steady-State Models; 5.4.3 Removal of Elements for Equilibrium; 5.4.4 Case Study with a Steady-Velocity Equilibrium; 5.4.5 Case Study with Stable and Unstable Static Equilibria; 5.4.6 Case Study with Limit-Cycle Behavior; 5.4.7 Necessary Condition for Instability or Limit-

Cycle Oscillation*; 5.4.8 Summary

x
Chapter 6 MATHEMATICAL FORMULATION FROM BOND GRAPHS.343
6.1 Causality and Differential Equations
6.1.1 Applying Causal Strokes; 6.1.2 Differential Equations for Causal Models; 6.1.3 Case Study: A Linear Circuit; 6.1.4 Case Study: Nonlinear Stick-Slip; 6.1.5 Case Study with Transformers and Gyrators; 6.1.6 Models Reducible to Causal Form; Order of a Model; 6.1.7 Summary
6.2 Over-Causal and Under-Causal Models
6.2.1 Treatment of Over-Causal Models; Case Study; 6.2.2 Equations for Under- Causal Models; 6.2.3 Algebraic Reduction Method; Case Study; 6.2.4 Differenti- ation Method; Case Study*; 6.2.5 Method of Non-Zero Virtual Energy-Storages; Case Study Continued; 6.2.6 Commercial Software for DAEs; 6.2.7 Case Study with Meshes; 6.2.8 Summary
6.3 The Loop Rule*
6.3.1 Signal Flow Graphs; 6.3.2 The Loop Rule for Signal Flow Graphs; 6.3.3 Converting Bond Graphs to Signal Flow Graphs; 6.3.4 Direct Application of the Loop Rule to Bond Graphs Without Meshes; 6.3.5 Bond Graphs with Meshes; 6.3.6 Determination of State Differential Equations; 6.3.7 Summary
Chapter 7 ANALYSIS OF LINEAR MODELS, PART 2419
7.1 Sinusoidal Frequency Response
7.1.1 The Phasor Method; 7.1.2 Bode Plots; 7.1.3 Models Comprising a Sin- gle Pole or Zero; 7.1.4 Models Comprising a Pair of Complex Poles or Zeros; 7.1.5 Factorization of Higher-Order Models; 7.1.6 Bode Plots for Higher-Order Models*; 7.1.7 The Pure Delay Operator*; 7.1.8 Summary
7.2 Mechanical Vibrations456
7.2.1 Case Study: Rotating Unbalanced Mass; 7.2.2 Case Study: Tuned Vibration Absorber; 7.2.3 Modes of Motion; 7.2.4 Case Study: Untuned Viscous Damper; 7.2.5 Summary
7.3 Matrix Representation of Dynamic Behavior*
7.3.1 The Matrix Exponential; 7.3.2 Response to a Linearly Varying Excita- tion; 7.3.3 Eigenvalues, Eigenvectors and Modes; 7.3.4 Case Study: Three Fluid Tanks; 7.3.5 Case Study with Complex Roots; 7.3.6 Modified Method for Com- plex Eigenvalues*; 7.3.7 Case Study: Vehicle Dynamics; 7.3.8 Application of MATLAB; 7.3.9 Response to Exponential and Frequency Excitations; 7.3.10 Representation in the s-Plane; 7.3.11 Summary
7.4 Fourier Analysis
7.4.1 Fourier Series; 7.4.2 Response of a Linear System to a Periodic Excitation; 7.4.3 Fourier Transform; 7.4.4 Digital Spectral Analysis*; 7.4.5 Fourier Analysis Using MATLAB*; 7.4.6 Summary
Chapter 8 INTRODUCTION TO AUTOMATIC CONTROL
8.1 Open- and Closed-Loop Control
8.1.1 Example Plant; 8.1.2 Open-Loop and Optimal Control; 8.1.3 Feedback Control; 8.1.4 Response to Disturbances; 8.1.5 Root Locus Basics; 8.1.6 Use of MATLAB; 8.1.7 Criteria for Stability; 8.1.8 Summary

8.2 Dynamic Compensation
8.2.1 Proportional-Plus-Integral Control; 8.2.2 Proportional-Plus-Derivative Control; 8.2.3 Proportional-Plus-Integral-Plus-Derivative Control; 8.2.4 Phase Lead Controllers; 8.2.5 Phase Lag Controllers; 8.2.6 Phase Lead-Lag Con- trollers; 8.2.7 Digital Control Systems; 8.2.8 Summary
8.3 Frequency Response Methods 558
8.3.1 Polar or Nyquist Frequency Response Plots; 8.3.2 The Nyquist Stabil- ity Criterion; 8.3.3 Measures of Relative Stability; 8.3.4 Nichols Charts; 8.3.5 Dynamic Compensation Using Nichols Charts; 8.3.6 Approximate Correction for Digital Sampling; 8.3.7 Special Roles for Bond Graphs in Control System Design; 8.3.8 Summary
Chapter 9 EXTENDED MODELING
9.1 Modulated Transformers
9.1.1 Remotely Modulated Transformers; 9.1.2 Locally Modulated Transform- ers; 9.1.3 Increase in the Order of a Model Due to Modulation; 9.1.4 Dependent Inertance with a Locally Modulated Transformer; 9.1.5 Inertance Dependent on Local Displacement; Case Study; 9.1.6 Summary
9.2 Activated Bonds
9.2.1 Definition and Application; 9.2.2 Causality; 9.2.3 Summary
9.3 Linear Multiport Fields
9.3.1 Linear Two-Port Inertance: The Electric Transformer; 9.3.2 Linear Two- port Inertance: The Rigid Inertive Floating Link; 9.3.3 Linear Two-Port Com- pliance: The Piezoelectric Transducer; 9.3.4 Linear Two-Port Compliance: The Piezomagnetic (Magnetostrictive) Transducer; 9.3.5 Linear Two-Port Compli- ance: The Thermoelastic Rod; 9.3.6 Linear Multiport Compliances: Gener- alized Linear Media*; 9.3.7 Reticulation of General Linear Multiport Fields*; 9.3.8 Summary
9.4 Nonlinear Multiport Fields
9.4.1 Nonlinear Compliance Fields: Generic Relationships; 9.4.2 Examples with Geometrically Varied Capacitance; 9.4.3 Nonlinear Multiport Inertances; 9.4.4 Inertances Dependent on Holonomic Constraints; 9.4.5 Inertances Dependent on Nonholonomic Constraints; 9.4.6 Summary
9.5 Magnetic Circuits
9.5.1 Magnetic Effort, Flow and Compliance; 9.5.2 Generation of Mechanical Forces; 9.5.3 First-Order Treatment of Permanent Magnets: A Case Study; 9.5.4 Flux Fringing and Leakage; 9.5.5 Eddy-Current Losses; 9.5.6 Saturation and Hysteresis; 9.5.7 Simulation with Hysteresis [*] ; 9.5.8 <i>RC</i> Element with Me- chanical Port [*] ; 9.5.9 Summary
9.6 Electric Motors
9.6.1 Vector Bonds and Transformers; 9.6.2 Synchronous Motor/Brushless D.C. Motor; 9.6.3 Three-Phase Induction Motors; 9.6.4 Single-Phase Induction Mo- tors; 9.6.5 Stepping Motors; 9.6.6 Summary

xi

xii
9.7 Irreversible Couplers and Thermal Systems
Coupler; 9.7.4 Application to Thethold, orthographs for Heat Conduction; 9.7.8 Thermal Compliance; 9.7.7 Pseudo Bond Graphs for Heat Conduction; 9.7.8 Thermodynamic Coupling Between Mechanical and Thermal Energies; 9.7.9 Lead-Acid Battery: Use of Legendre Transformation; 9.7.10 Summary
Chapter 10 DISTRIBUTED-PARAMETER MODELS
10.1Wave Models with Simple Boundary Conditions
10.1.1 Camparison of Lumped and Distributed Models; 10.1.2 The Pure Bilateral-Wave-Delay Model; 10.1.3 Analysis of the Pure Bilateral-Wave-Delay Model; 10.1.4 Fixed and Free Boundary Conditions; 10.1.5 Fourier Analysis with Fixed or Free Boundary Conditions [*] ; 10.1 6 The Hodograph Plane; 10.1.7 Summary
10.2 One-Dimensional Models729
10.2.1 General Formulation; 10.2.2 One-Power Models; 10.2.3 Symmetric One- Power Models; 10.2.4 Multiple-Power Models; 10.2.5 Summary
10.3 Wave Propagation
10.3.1 Simplest Model: Pure Transport; 10.3.2 First Modification: Thermal Leakage to a Constant-Temperature Environment; 10.3.3 Second Modification: Thermal Compliance in the Walls; 10.3.4 Dispersion and Absorption; 10.3.5 Group Velocity*; 10.3.6 Summary
10.4 One-Power Symmetric Models
10.4.1 Wave Behavior; 10.4.2 Energy Velocity in Conservative Media*; 10.4.3 Boundary-Value Problems; Transmission Matrices; 10.4.4 Exponentially Ta- pered Systems*; 10.4.5 Summary
10.5 Multiple-Power Models
10.5.1 Symmetric and Anti-Symmetric Variables and Models; 10.5.2 Case Study of a Degenerate System: A Counterflow Heat Exchanger; 10.5.3 Case Study of a Symmetric Model: The Bernoulli-Euler Beam; 10.5.4 Summary
10.6 Models of Dissipative Processes
10.6.1 The Uniform Constant IRC Model; 10.6.2 Fluid Line Dynamics; 10.6.3 The Skin Effect in Electrical Conductors; 10.6.4 The Maxwell Model; 10.6.5 The Voigt Model; 10.6.6 The Linear Elastic Solid; 10.6.7 Simulation of Coupled Storage and Dissipation Fields; 10.6.8 Example of Viscous Effects in Laminar Flow in a Tube; 10.6.9 Example of Heat Transfer Effects in a Cylindrical Accumulator; 10.6.10 Summary
10.7 Wave-Scattering Variables
10.7.1 The Transformation; 10.7.2 Single-Power Uniform Symmetric Models; 10.7.3 The Method of Characteristics for Pure Bilateral Waves; 10.7.4 General- ization to Non-Symmetric Cases; 10.7.5 The Quasi Method of Characteristics; 10.7.6 The Bernoulli-Euler Beam; 10.7.7 Summary
10.8 Internal Excitation [*]
10.8.1 Model Formulation and General Solution; 10.8.2 Example of Green's Functions; 10.8.3 Stretched Strings and Beams on Elastic Foundations with Moving Loads; 10.8.4 Summary

10.9 Modal Decomposition
10.9.1 General Procedure; 10.9.2 Sinusoidal Modes: Example of a Plucked String; 10.9.3 Sinusoidal Modes: Example of a Struck Simply-Supported Beam; 10.9.4 Bond-Graph Modeling; 10.9.5 Modes with Effort-Free Boundaries: Ex- ample of a Bernoulli-Euler Beam; 10.9.6 Avoiding Differential Causality; 10.9.7 Summary
10.10 Complex Compound Systems: A Case Study*
10.10.1 A Model for Uniform Straight Tubing; 10.10.2 A Model for Uniformly Curved Tubing; 10.10.3 The Rotation Matrix; 10.10.4 The Transmission Matrix for a Cascade of Tubes; 10.10.5 Three-Port Junctions; 10.10.6 Added Lumped Impedances; 10.10.7 Boundary Conditions; 10.10.8 Power Flow and Energy Density; 10.10.9 Computational and Experimental Example; 10.10.10 Summary
Chapter 11 THERMODYNAMIC SYSTEMS851
11.1 The Convection Bond and Compressible Flow
11.1.1 Flow Through a Port; 11.1.2 The Convection Bond; 11.1.3 The <i>RS</i> Ele- ment for Fluid Flow; 11.1.4 Summary
 11.2 Heat Interaction and Junctions
11.3 Case Study with Quasi-Steady Flow*
11.3.1 The Bond Graph Model; 11.3.2 Irreversibilities; 11.3.3 Computation of Results
11.4 Thermodynamic Compliance and Inertance
11.4.1 Application of a Simple Thermal Compliance; 11.4.2 Causality; 11.4.3 General Thermodynamic Compliance; 11.4.4 The CS Macro Element; 11.4.5 Computations for the Ideal Gas; 11.4.6 Case Study: A Piston-Cylinder Compressor; 11.4.7 Treatment of a Quasi-Steady-State Fluid Machine; 11.4.8 Pseudo Bond Graphs for Compressible Thermofluid Systems; 11.4.9 Fluid Inertance and Area Change With Compressible Flow; 11.4.10 Summary
11.5 Evaluation of Thermodynamic Properties
11.5.1 The Most Commonly Available Analytical Form for State Properties; 11.5.2 Helmholtz Analytical Form for State Properties; 11.5.3 Application to Gases; 11.5.4 Application to Refrigerants; 11.5.5 Application to Water; 11.5.6 Saturated Vapor Density for Other Substances; 11.5.7 Case Study: A Refriger- ation Cycle; 11.5.8 Application to the Liquid Region; 11.5.9 Considerations of Reversing Flows; 11.5.10 Simulation with Fluid Kinetic Energy; 11.5.11 Heat Transfer Equations for Three-Phase CS Elements; 11.5.12 Summary
11.6 Systems with Chemical Reaction*
11.6.1 Energy of a Pure Substance; 11.6.2 Energy of Multiple Species; 11.6.3 Stoichoimetric Coefficients and Reaction Forces; 11.6.4 Chemical Equilibrium; 11.6.5 Reaction Rates; 11.6.6 Models of Reactions without Mass Flows; 11.6.7 Models of Reactions with Mass Flows; 11.6.8 Summary

x	i	v
л	ı	v

$\frac{3 \cdot \epsilon_1}{4 \cdot \epsilon_2} = \frac{3 \cdot \epsilon_2}{4 \cdot \epsilon_2} \frac{1}{4 \cdot \epsilon_2} $
xiv
Chapter 12 TOPICS IN ADVANCED MODELING
12.1 Field Lumping
12.1.1 Scalar Fields; 12.1.2 Rigid-Body Vector Fields; 12.1.3 The Role of Approximations; 12.1.4 Nodic Fields; 12.1.5 Planar Vector Nodic Fields; 12.1.6 Estimating Upper and Lower Bounds for Field Transmittances*; 12.1.7 Three-Dimensional Vector Nodic Fields; 12.1.8 Near-Spherical Fields; 12.1.9 Near-Cylindrical Fields; 12.1.10 Multiport Vector Nodic Fields; 12.1.11 Summary
12.2 Nonconservative Couplers
12.2.1 Causal Relations; 12.2.2 Equilibrium; 12.2.3 Dimensional Analysis; 12.2.4 Dynamic Simulation; 12.2.5 Linear Couplers; 12.2.6 Summary
12.3 Lagrange's Equations for Holonomic Systems
12.3.1 Primitive Coordinates and Velocities; 12.3.2 Holonomic Constraints; 12.3.3 Lagrange's Equations; 12.3.4 Example of a Solenoid; 12.3.5 Summary
12.4 Lagrangian Bond Graphs; Dissipation
12.4.1 Shorthand Notation; 12.4.2 Detailed Lagrangian Bond Graphs; 12.4.3 Example of the Flyball Governor; 12.4.4 Example of a Vibratory Rate Gyro; 12.4.5 Dissipation; 12.4.6 Summary
12.5 Nonholonomic Constraints
12.5.1 Case Study: Variable-Flywheel Energy Storage for Vehicles; 12.5.2 Analysis and Representation of Nonholonomic Systems; 12.5.3 Application to Case Study; 12.5.4 Example of the Rolling Penny; 12.5.5 Irreversible Nonholo- nomic Constraints; 12.5.6 The Umbra-Lagrangian of Mukherjee; 12.5.7 Sum- mary
12.6 Hamilton's Equations and Bond Graphs*1000
12.6.1 Hamilton's Equations; 12.6.2 Hamiltonian Bond Graphs; 12.6.3 Applica- tion to Flyball Governor; 12.6.4 Example of a Seating Valve Using Lagrange's Equations; 12.6.5 Hamilton's Equations for the Seating Valve; 12.6.6 Viscous Dissipation; 12.6.7 Summary
APPENDIX A INTRODUCTION TO MATLAR®
Scalar Calculations; Variables; Complex Numbers; Arrays and Matrices; Evalu- ating and Plotting Functions; Fitting Curves to Data; Control Flow Commands; Script Files; Data Files; Function Files; Communication Between Files; MAT- LAB Files Downloadable from the Internet
APPENDIX B CLASSICAL VIBRATIONS
B.1 Models with Two Degrees of Freedom
B.1.1 Normal Mode Vibration; B.1.2 Forced Harmonic Motion
B.2 Higher-Order Models
APPENDIX C LAPLACE TRANSFORM PAIRS
APPENDIX D THERMODYNAMIC DATA AND COMPUTER CODE 1027
D.1 Programs and Data for Air and Components; D.2 Programs and Data for Refrigerants R12 and R134a; D.3 Data for Refrigerant R22; D.4 Programs and Data for Water
Index

•