Contents

Part I	Sustainability of Future HPC Systems: Application
	Driven Challenges

Fe	asibility Study of a Future HPC System	
fo	r Memory-Intensive Applications: Final Report	3
Hi	roaki Kobayashi	
1	Introduction	3
2	System Architecture	7
3	Performance Estimation	10
4	Summary	15
Re	ferences	16
Tł	e GASPI API: A Failure Tolerant PGAS API for	
As	ynchronous Dataflow on Heterogeneous Architectures	17
Cł	ristian Simmendinger, Mirko Rahn, and Daniel Gruenewald	
1	Introduction	17
2	GASPI Overview	19
	2.1 History	19
	2.2 Goals	20
3	The GASPI Concepts	21
	3.1 GASPI Execution Model	21
	3.2 GASPI Groups	21
	3.3 GASPI Segments	22
4	GASPI One-Sided Communication	23
	4.1 Basic Calls	24
	4.2 Weak Synchronization	25
	4.3 Extended Calls	26
5	GASPI Passive Communication	27
6	GASPI Global Atomics	29
7	GASPI Collective Communication	29

vii

8	GASPI Failure Tolerance	31
	8.1 GASPI Timeouts	31
	8.2 GASPI Error Vector	31
Сс	onclusion	31
Re	eferences	32
Cł	haracteristic Analysis of Applications for Designing a Future	
	PC System	33
	samu Watanabe, Takashi Soga, Youichi Shimomura, and Akihiro	
	usa	
1	Introduction	34
2	Social and Scientific Challenges	35
	2.1 Natural Disaster Mitigation	35
	2.2 High Productivity Engineering	35
3	Application Requirements for the Future System	37
4	Performance Estimation on our Designed System	40
5	Potential of Overcoming the Challenges by Using our	
	Designed System	43
	5.1 Natural Disaster Mitigation	43
	5.2 High Productivity Engineering	43
6	Summary	44
Ap	opendix	45
Re	ferences	45
Er	hancing High Performance Computing with Cloud	
	oncepts and Technologies	47
	stian Koller and Michael Gienger	
1	Introduction	47
2	Current Situation in HPC	48
3	High Performance Computing and/or Clouds	49
	3.1 High Performance Computing Compared with Clouds	49
	3.2 Complementary Use of HPC and Cloud	50
4	Cloud Based Access to HPC: Fortissimo as an Example	51
	4.1 Introducing the Fortissimo Project	51
	4.2 Realizing the One-Stop-Shop	51
5	The Road to Further HPC-Cloud Solutions	54
Co	onclusions	55
Re	ferences	56
SX	K-ACE, Brand-New Vector Supercomputer for Higher	
	stained Performance I	57
	intaro Momose	
1	Introduction	57
2	Architecture of SX-ACE	59
3	Implementation	62
4	Performance Evaluation	64

Conclusions		
SX-ACE, the Brand-New Vector Supercomputer for Higher	67	
Sustained Performance II	69	
Noritaka Hoshi and Shintaro Momose	07	
1 Introduction	69	
2 Concept of Design	70	
2.1 Big Core Concept	70	
2.2 Reduction of Power and Space	71	
3 Architecture Overview	72	
4 Implementation	74	
5 Performance Evaluation	76	
Conclusion	78	
References	79	
Feasibility Study of a Future HPC System for Memory		
Intensive Applications: Conceptual Design of Storage System	81	
Ken'ichi Itakura, Akihiro Yamashita, Koji Satake, Hitoshi Uehara,	0.	
Atsuya Uno, and Mitsuo Yokokawa		
1 Introduction	81	
2 Objectives	82	
2.1 Design Cycle	82	
2.2 Requirements from Applications	82	
3 Design Concept and Result	83	
4 Storage System Performance	85	
5 Summary	87	
References	88	
Part II Exploitation of Existing HPC Systems: Potentiality,		
Performance and Productivity		
Designing an HPC Refactoring Catalog Toward the Exa-scale Computing Era	91	
Computing Era Ryusuke Egawa, Kazuhiko Komatsu, and Hiroaki Kobayashi	91	
1 Introductions	91	
	91	
	92 93	
3 Designing an HPC Refactoring Catalog		
3.1 Design Concepts	93	
3.2 Current Status of the HPC Refactoring Catalog	96	
3.3 Ongoing and Future Work	97	
Conclusions	98	
References	98	

	dorsing Supercomputing Applications to Java Language	99
Al	exey Cheptsov and Bastian Koller	
1	Introduction	99
2	Related Work	101
	2.1 MPI Bindings for Java	101
	2.2 Native C Implementations of MPI	102
	2.3 Non-MPI Based Approaches	102
3	Design and Implementation	104
	3.1 Objectives	104
	3.2 Architecture	105
	3.3 Configuration and Running	107
4	Performance Evaluation	109
	4.1 Basic Benchmarks	109
	4.2 Pilot Application Scenario: Random Indexing Over Large	
	Text Sets	113
5	Future Work	114
Co	nclusion	116
	ferences	116
	rformance Evaluation of an OpenMP Parallelization by	
	ing Automatic Parallelization Information	119
	zuhiko Komatsu, Ryusuke Egawa, Hiroyuki Takizawa,	
and	d Hiroaki Kobayashi	
1	Introduction	119
2	OpenMP Parallelization by Using Automatic Parallelization	
	Information	121
3	Performance Evaluation	122
	3.1 Experimental Environments	122
	3.2 Performance of OpenMP Codes Parallelized by using	
	Automatic Parallelization Information	123
Co	nclusions	125
Re	ferences	126
	TOLL and Data Movements in Heterogeneous Computing	
	vironments	127
	lger Fröning	
1	Introduction	127
2	EXTOLL	
	2.1 Communication Engines	
	2.2 Key Performance Characteristics	132
	2.3 Additional Reading	132
3	Global GPU Address Spaces	133
	3.1 GPUs and Accelerated Clusters	133
	3.2 A Thread-Collaborative Communication Model	134
	3.3 Key Performance Characteristics	136
	3.4 Additional Reading	136

4		ted Work	136
		ion	137 138
		ements for Modern Network Infrastructures mann, Alexander Kiontke, and Sabine Roller	141
1	Mot	ivation	141
	1.1	MPLS Traffic Engineering in OSPF Networks a	
		Combined Approach	142
	1.2	Enabling Software Defined Network (SDN) in Old	
		School Networks with Software-Controlled Routing Protocols	142
2	Requ	airements for Modern Network Development at the University	143
	2.1	Collision Domain	143
	2.2	Routing in the Core	144
	2.3	Routing with Redundant ISP Connection	146
	2.4	Optical Fibre	147
	2.5	Optical Fibre with MPLS	147
Ca		ion	149
3		her Work	149
Re		Ces	149
т			
		nnection Network: Design Space Exploration of	1.5.1
		k for Supercomputers	151
	entaro		
1		duction	151
2		Imption for Design Space Exploration	152
3		minary Comparison Among Possible Topologies	153
4	Deta	iled Evaluation	158
Co	onclus	ions	160
Re	eferen	ces	161
Pa	rt III		
		Multi-Physics Applications	
E	perie	nces in Developing HPC Software with Portable Efficiency	165
Da	aniel F	riedrich Harlacher, Harald Klimach, and Sabine Roller	
1	Intro	duction	165
2	Buil	ding Blocks in HPC Software Design	167
	2.1	Implementation Language	167
	2.2	Portability	168
	2.3	Ease of Use	169
	2.4	Maintaining a Scientific HPC Application	170
Co		ions	171
		Ces	171

.

	ascale Computations for Large-Scale Atomic and Molecular llisions	173
	endan M. McLaughlin and Connor P. Ballance	170
1	Introduction	173
2	Parallel R-matrix Photoionization	175
3	Scalability	175
4	X-ray and Inner-Shell Processes	178
5	Heavy Atomic Systems	180
5	5.1 Kr and Xe lons	180
	5.2 Tungsten (W) Ions	182
6	Future Directions and Emergence of GPUS	182
	Frences	185
		105
	GA-Based Scalable Custom Computing Accelerator for	
	mputational Fluid Dynamics Based on Lattice Boltzmann Method	187
Ke	ntaro Sano	
1	Introduction	187
2	Tightly-Coupled FPGA Cluster for Scalable Custom Computing	189
	2.1 Architecture of Tightly-Coupled FPGA Cluster	189
	2.2 Design and Implementation of a Cluster Node	190
	2.3 Acceleration Framework on FPGA	192
3	Case Study: Custom Computing with Lattice Boltzmann Method	193
	3.1 Lattice Boltzmann Method	193
	3.2 Architecture for Stream Computation	194
	3.3 PE Design for Fully-Streamed Computation	195
4	Performance Evaluation	196
	4.1 Implementation of PEs	196
	4.2 Resource Consumption	197
	4.3 Computational Performance	198
Co	iclusions	200
Re	erences	200
		202
	plication of HPC to Earthquake Hazard and Disaster Estimation	203
	neo Hori, Tsuyoshi Ichimura, Maddegedara L.L. Wijerathne,	
	Kouhei Fujita	202
1	Introduction	203
2	Overview of HPC Application	204
	2.1 Capability Computing	204
	2.2 Capacity Computing	205
3	Structure Seismic Response Analysis	206
	3.1 Fault-Structure System of Nuclear Power Plant	206
	3.2 Reinforced Concrete Pier	209
4	Urban Area Seismic Response Analysis	212
	4.1 Overview of Urban Area Seismic Response Analysis	212
	4.2 Partial Reproduction of 2011 Great East Japan	
	Earthquake Disaster	214

	4.3 Partial Estimation of Tokyo Metropolis Earthquake		216
Cor	nclusion		219
Ref	References		219
Ge	ometry Dependent Computational Study of Patient Specific		
Ab	dominal Aortic Aneurysm		221
Nis	arg Patel and Uwe Küster		
1	Introduction		221
2	Image Modeling		223
	2.1 Image Acquisition and Segmentation		223
	2.2 Image Processing		223
3	Computational Modeling		228
	3.1 Finite Element Model		230
	3.2 Fluid Simulation Model		230
4	Results		233
References		237	

-