# Contents (Part II/B)

| Preface | e to Part II/B                                             | vii |
|---------|------------------------------------------------------------|-----|
| GENI    | ERALIZATION TO NONLINEAR                                   |     |
|         | IONARY PROBLEMS                                            | 469 |
| Basic I | deas of the Theory of Monotone Operators                   | 471 |
| СНАР    | TER 25                                                     |     |
| Lipsch  | itz Continuous, Strongly Monotone Operators, the           |     |
| -       | tion-Iteration Method, and Monotone Potential Operators    | 495 |
| §25.1.  | · -                                                        | 497 |
| §25.2.  |                                                            | 499 |
| §25.3.  | Monotone Operators                                         | 500 |
| §25.4.  | -                                                          |     |
| Ū       | the Projection-Iteration Method                            | 503 |
| §25.5.  | Monotone and Pseudomonotone Operators, and                 |     |
|         | the Calculus of Variations                                 | 506 |
| §25.6.  | The Main Theorem on Monotone Potential Operators           | 516 |
| §25.7.  | The Main Theorem on Pseudomonotone Potential Operators     | 518 |
| §25.8.  | Application to the Main Theorem on Quadratic Variational   |     |
|         | Inequalities                                               | 519 |
| §25.9.  | Application to Nonlinear Stationary Conservation Laws      | 521 |
| §25.10. | Projection-Iteration Method for Conservation Laws          | 527 |
| §25.11. | The Main Theorem on Nonlinear Stationary Conservation Laws | 535 |
| §25.12. | Duality Theory for Conservation Laws and Two-sided         |     |
|         | a posteriori Error Estimates for the Ritz Method           | 537 |
| §25.13. | The Kačanov Method for Stationary Conservation Laws        | 542 |
| §25.14. | The Abstract Kačanov Method for Variational Inequalities   | 545 |



ix

## CHAPTER 26

| CHAP    | TER 26                                                        |       |
|---------|---------------------------------------------------------------|-------|
| Mono    | one Operators and Quasi-Linear Elliptic                       |       |
| Differe | ntial Equations                                               | 553   |
| §26.1.  | Hemicontinuity and Demicontinuity                             | 554   |
| §26.2.  | The Main Theorem on Monotone Operators                        | 556   |
| §26.3.  | The Nemyckii Operator                                         | 561   |
| §26.4.  | Generalized Gradient Method for the Solution of               |       |
|         | the Galerkin Equations                                        | 564   |
| §26.5.  | Application to Quasi-Linear Elliptic Differential Equations   |       |
|         | of Order 2m                                                   | 567   |
| §26.6.  | Proper Monotone Operators and Proper Quasi-Linear Elliptic    |       |
|         | Differential Operators                                        | 576   |
| СНАР    | TER 27                                                        |       |
| Pseudo  | omonotone Operators and Quasi-Linear Elliptic                 |       |
| Differe | ntial Equations                                               | 580   |
| §27.1.  | The Conditions $(M)$ and $(S)$ , and the Convergence of       |       |
| Ū       | the Galerkin Method                                           | 583   |
| §27.2.  | Pseudomonotone Operators                                      | 585   |
| §27.3.  | The Main Theorem on Pseudomonotone Operators                  | 589   |
| §27.4.  | Application to Quasi-Linear Elliptic Differential Equations   | 590   |
| §27.5.  | · · ·                                                         | 595   |
| §27.6.  |                                                               | 598   |
| §27.7.  |                                                               | 598   |
| §27.8.  | Application to Strongly Nonlinear Differential Equations      | 604   |
| СНАР    | TER 28                                                        |       |
| Monot   | one Operators and Hammerstein Integral Equations              | 615   |
| §28.1.  | A Factorization Theorem for Angle-Bounded Operators           | 619   |
| §28.2.  | Abstract Hammerstein Equations with Angle-Bounded             |       |
|         | Kernel Operators                                              | 620   |
| §28.3.  | 1 1 1                                                         | 625   |
| §28.4.  |                                                               | 627   |
| §28.5.  | Application to Semilinear Elliptic Differential Equations     | 632   |
| СНАР    | TER 29                                                        |       |
| Nonco   | ercive Equations, Nonlinear Fredholm Alternatives,            |       |
|         | Monotone Operators, Stability, and Bifurcation                | 639   |
| -       | Pseudoresolvent, Equivalent Coincidence Problems, and the     |       |
| 3       | Coincidence Degree                                            | 643   |
| §29.2.  | Fredholm Alternatives for Asymptotically Linear, Compact      | • • • |
| 0       | Perturbations of the Identity                                 | 650   |
| §29.3.  | Application to Nonlinear Systems of Real Equations            | 652   |
| §29.4.  | Application to Integral Equations                             | 653   |
| §29.5.  | Application to Differential Equations                         | 653   |
| §29.6.  | The Generalized Antipodal Theorem                             | 654   |
| §29.7.  | Fredholm Alternatives for Asymptotically Linear (S)-Operators | 657   |
| §29.8.  | Weak Asymptotes and Fredholm Alternatives                     | 657   |

| §29.9.  | Application to Semilinear Elliptic Differential Equations of |     |
|---------|--------------------------------------------------------------|-----|
|         | the Landesman-Lazer Type                                     | 661 |
| §29.10. | The Main Theorem on Nonlinear Proper Fredholm Operators      | 665 |
| §29.11. | Locally Strictly Monotone Operators                          | 677 |
| §29.12. | Locally Regularly Monotone Operators, Minima, and Stability  | 679 |
| §29.13. | Application to the Buckling of Beams                         | 697 |
| §29.14. | Stationary Points of Functionals                             | 706 |
| §29.15. | Application to the Principle of Stationary Action            | 708 |
| §29.16. | Abstract Statical Stability Theory                           | 709 |
| §29.17. | The Continuation Method                                      | 712 |
| §29.18. | The Main Theorem of Bifurcation Theory for Fredholm          |     |
|         | Operators of Variational Type                                | 712 |
| §29.19. | Application to the Calculus of Variations                    | 722 |
| §29.20. | A General Bifurcation Theorem for the Euler Equations        |     |
|         | and Stability                                                | 730 |
| §29.21. | A Local Multiplicity Theorem                                 | 733 |
| §29.22. | A Global Multiplicity Theorem                                | 735 |
| GENI    | ERALIZATION TO NONLINEAR                                     |     |
|         | STATIONARY PROBLEMS                                          | 765 |
| TIOU    |                                                              | 105 |

| CHAP    | TER 30                                                           | <   |
|---------|------------------------------------------------------------------|-----|
| First-C | rder Evolution Equations and the Galerkin Method                 | 767 |
| §30.1.  | Equivalent Formulations of First-Order Evolution Equations       | 767 |
| §30.2.  | The Main Theorem on Monotone First-Order Evolution Equations     | 770 |
| §30.3.  | Proof of the Main Theorem                                        | 771 |
| §30.4.  | Application to Quasi-Linear Parabolic Differential Equations     |     |
|         | of Order 2m                                                      | 779 |
| §30.5.  | The Main Theorem on Semibounded Nonlinear                        |     |
|         | Evolution Equations                                              | 783 |
| §30.6.  | Application to the Generalized Korteweg-de Vries Equation        | 790 |
|         | The Main Theorem on Semibounded Nonlinear<br>Evolution Equations | 78: |

#### **CHAPTER 31**

| Maxim   | al Accretive Operators, Nonlinear Nonexpansive Semigroups,   |     |
|---------|--------------------------------------------------------------|-----|
| and Fin | rst-Order Evolution Equations                                | 817 |
| §31.1.  | The Main Theorem                                             | 819 |
| §31.2.  | Maximal Accretive Operators                                  | 820 |
| §31.3.  | Proof of the Main Theorem                                    | 822 |
| §31.4.  | Application to Monotone Coercive Operators on B-Spaces       | 827 |
| §31.5.  | Application to Quasi-Linear Parabolic Differential Equations | 829 |
| §31.6.  | A Look at Quasi-Linear Evolution Equations                   | 830 |
| §31.7.  | A Look at Quasi-Linear Parabolic Systems Regarded as         |     |
|         | Dynamical Systems                                            | 832 |
|         |                                                              |     |

### **CHAPTER 32**

| Maximal Monotone Mappings |                                         | 840 |
|---------------------------|-----------------------------------------|-----|
| §32.1.                    | Basic Ideas                             | 843 |
| §32.2.                    | Definition of Maximal Monotone Mappings | 850 |

| §32.3.         | Typical Examples for Maximal Monotone Mappings                | 854 |
|----------------|---------------------------------------------------------------|-----|
| §32.4.         | The Main Theorem on Pseudomonotone Perturbations of           |     |
|                | Maximal Monotone Mappings                                     | 866 |
| §32.5.         | Application to Abstract Hammerstein Equations                 | 873 |
| §32.6.         | Application to Hammerstein Integral Equations                 | 874 |
| §32.7.         | Application to Elliptic Variational Inequalities              | 874 |
| §32.8.         | Application to First-Order Evolution Equations                | 876 |
| §32.9.         | Application to Time-Periodic Solutions for Quasi-Linear       |     |
| U              | Parabolic Differential Equations                              | 877 |
| §32.10.        | Application to Second-Order Evolution Equations               | 879 |
| §32.11.        | Regularization of Maximal Monotone Operators                  | 881 |
| §32.12.        | Regularization of Pseudomonotone Operators                    | 883 |
| §32.13.        | Local Boundedness of Monotone Mappings                        | 884 |
| §32.14.        | Characterization of the Surjectivity of Maximal               |     |
| U              | Monotone Mappings                                             | 886 |
| §32.15.        | The Sum Theorem                                               | 888 |
| §32.16.        | Application to Elliptic Variational Inequalities              | 892 |
| §32.17.        | Application to Evolution Variational Inequalities             | 893 |
| §32.18.        | The Regularization Method for Nonuniquely Solvable            |     |
| U              | Operator Equations                                            | 894 |
| §32.19.        | Characterization of Linear Maximal Monotone Operators         | 897 |
| §32.20.        | Extension of Monotone Mappings                                | 899 |
| §32.21.        | 3-Monotone Mappings and Their Generalizations                 | 901 |
| §32.22.        | The Range of Sum Operators                                    | 906 |
| §32.23.        | Application to Hammerstein Equations                          | 908 |
| §32.24.        | The Characterization of Nonexpansive Semigroups in H-Spaces   | 909 |
| CHAP           | TER 33                                                        |     |
| Second         | -Order Evolution Equations and the Galerkin Method            | 919 |
| <b>§33.1</b> . | The Original Problem                                          | 921 |
| §33.2.         | Equivalent Formulations of the Original Problem               | 921 |
| §33.3.         | The Existence Theorem                                         | 923 |
| §33.4.         | Proof of the Existence Theorem                                | 924 |
| §33.5.         | Application to Quasi-Linear Hyperbolic Differential Equations | 928 |
| §33.6.         | Strong Monotonicity, Systems of Conservation Laws, and        |     |
| 0.             | Quasi-Linear Symmetric Hyperbolic Systems                     | 930 |
| §33.7.         | Three Important General Phenomena                             | 934 |
| §33.8.         | The Formation of Shocks                                       | 935 |
| §33.9.         | Blowing-Up Effects                                            | 937 |
| §33.10.        | Blow-Up of Solutions for Semilinear Wave Equations            | 944 |
| §33.11.        | A Look at Generalized Viscosity Solutions of                  |     |
| 0              | Hamilton–Jacobi Equations                                     | 947 |
|                | -                                                             |     |
| GENE           | ERAL THEORY OF DISCRETIZATION METHODS                         | 959 |
| CILAD          |                                                               |     |

#### CHAPTER 34

Inner Approximation Schemes, A-Proper Operators, and the Galerkin Method

| §34.1.         | Inner Approximation Schemes                               | 963        |
|----------------|-----------------------------------------------------------|------------|
| §34.2.         | The Main Theorem on Stable Discretization Methods with    |            |
|                | Inner Approximation Schemes                               | 965        |
| §34.3.         | Proof of the Main Theorem                                 | 968        |
| §34.4.         | •• •                                                      | 0.40       |
| 0 <b>0</b> 4 C | Theorem on Strongly Stable Operators                      | 969        |
| §34.5.         | Inner Approximation Schemes in B-Spaces                   | 972<br>974 |
| §34.6.         | Application to the Numerical Range of Nonlinear Operators | 9/4        |
| СНАР           | TER 35                                                    |            |
| Extern         | al Approximation Schemes, A-Proper Operators, and         |            |
| the Dif        | ference Method                                            | 978        |
| §35.1.         | External Approximation Schemes                            | 980        |
| §35.2.         |                                                           |            |
|                | External Approximation Schemes                            | 982        |
| §35.3.         | Proof of the Main Theorem                                 | 984        |
|                | Discrete Sobolev Spaces                                   | 985        |
| §35.5.         |                                                           | 988        |
| 933.6.         | Proof of Convergence                                      | 990        |
| СНАР           | TER 36                                                    |            |
| Mappi          | ng Degree for A-Proper Operators                          | 997        |
|                | Definition of the Mapping Degree                          | 998        |
|                | Properties of the Mapping Degree                          | 1000       |
| §36.3.         | The Antipodal Theorem for A-Proper Operators              | 1000       |
| §36.4.         | A General Existence Principle                             | 1001       |
| Appen          | dix                                                       | 1009       |
| Referen        | nces                                                      | 1119       |
| List of        | Symbols                                                   | 1163       |
| List of        | Theorems                                                  | 1174       |
| List of        | the Most Important Definitions                            | 1179       |
| List of        | Schematic Overviews                                       | 1182       |
| List of        | Important Principles                                      | 1183       |
| Index          |                                                           | 1189       |
|                |                                                           |            |