Contents

1	Fad	deev Eq	uation Approach for Three-Cluster Nuclear Reactions	1			
	A. I	Deltuva,	A.C. Fonseca, and R. Lazauskas				
	1.1	1.1 Introduction					
	1.2	Mome	ntum-Space Description of Three-Particle Scattering	2			
		1.2.1	Alt, Grassberger, and Sandhas Equations	3			
		1.2.2	Inclusion of the Coulomb Interaction	5			
		1.2.3	Practical Realization	8			
	1.3	Config	uration Space	11			
		1.3.1	Faddeev-Merkuriev Equations	11			
		1.3.2	Complex Scaling	13			
	1.4	Applic	ation to Three-Body Nuclear Reactions	15			
		1.4.1	Numerical Comparison of AGS and FM Methods	16			
		1.4.2	Comparison with Traditional Nuclear Reaction Approaches	18			
		1.4.3	Beyond Standard Dynamic Models	19			
	1.5	Summ	ary	21			
	Refe	erences	•	22			
•	El.		the Three states on a Decka of Newlaws Chartesian	25			
4	Electromagnetic Transitions as a Probe of Nuclear Clustering						
	21	Introdu	Introduction 2				
	22	Gamm	a-Ray Spectroscopy	26			
	2.2 Gamma-Kay Specifoscopy						
	2.0	231	Molecular Transitions in ⁸ Be	27			
		2.3.1	Alpha Clustering in ${}^{12}C$	20			
		2.2.2	FO Transitions	20			
	24	$12C \pm$	¹² C Clustering	30			
	2.7	241	Searching for Transitions Within ${}^{12}C \perp {}^{12}C$ Cluster Bands	30			
		2.4.1	Connecting Carbon-Carbon Resonances to Low-Lying	50			
		2.4.2	States: Heavy-Ion Radiative Canture	31			
		2/3	Total Cross-Section Measurements	35			
		2.4.3	Strangth Distribution Measurements Using DP ACON	- 36			
		∠	Suchgui Distribution Measurements Using DRAGON	50			

xi

		2.4.5 Gammasphere and FMA	39						
		2.4.6 Studies of the ${}^{12}C({}^{16}O,\gamma)$ Reaction	42						
	2.5	Superdeformed Bands and Clustering	42						
	2.6	Future Prospects and New Detector Materials	47						
	Refe	erences	48						
3	"Tomography" of the Cluster Structure of Light Nuclei via								
	Rela	tivistic Dissociation	51						
	P.I. 2	Zarubin							
	3.1	Introduction	51						
	3.2	Physics of Relativistic Nuclei	54						
	3.3	Dissociation of Relativistic Nuclei	60						
		3.3.1 Advantages of the NTE Technique	60						
		3.3.2 Coherent Dissociation of Relativistic ¹² C and ¹⁶ O Nuclei .	64						
		3.3.3 Features of the Dissociation of Heavier Nuclei	65						
		3.3.4 Cluster Structure of ⁶ Li and ⁷ Li Nuclei \ldots	67						
		3.3.5 Exposure in a Mixed Beam of ⁶ He and ³ H Isotopes \ldots	69						
	3.4	First Exposures at the JINR Nuclotron	69						
		3.4.1 Dissociation of the 10 B Nucleus	69						
		3.4.2 Dissociation of the ¹¹ B Nucleus \ldots	70						
		3.4.3 Dissociation of the ⁷ Be nucleus \ldots \ldots \ldots	71						
	3.5	Fragmentation of the ⁹ Be Nucleus	73						
	3.6	Peripheral Interactions of ¹⁴ N Nuclei	75						
	3.7	Coherent Dissociation of ⁸ B Nuclei	76						
	3.8	Coherent Dissociation of ⁹ C Nuclei	77						
	3.9	Coherent Dissociation of ${}^{10}C$ and ${}^{12}N$ Nuclei	79						
		3.9.1 Exposure to a Mixed Beam of ${}^{12}N$, ${}^{10}C$ and ${}^{7}Be$ Nuclei	79						
		3.9.2 Dissociation of 10 C Nuclei	80						
		3.9.3 Coherent Dissociation of ¹² N Nuclei	84						
	3.10	Stopped Radioactive Nuclei	85						
	3.11	High-Energy Frontier	87						
	3.12	Conclusions	89						
	Refe	rences	92						
4	From	n Light to Hyper-heavy Molecules and Neutron-Star Crusts in							
	a Dy	namical Mean-Field Approach	95						
	Cédi	ic Simenel							
	4.1	Introduction	95						
	4.2	The Time-Dependent Hartree-Fock Theory	96						
		4.2.1 The Mean-Field Approximation	96						
		4.2.2 Formalism	97						
		4.2.3 The Skyrme Energy Density Functional	98						
		4.2.4 Numerical Implementation	102						
		4.2.5 Beyond the TDHF Approach	103						
	4.3	Formation of Light Molecules	105						
	-	4.3.1 Structures in Fusion Cross-Sections	105						

5

	4.3.2	Contact Times Around the Barrier in ${}^{12}C + {}^{16}O$	107	
	4.3.3	The $J^{\pi} = 36^+$ Resonance in ${}^{24}Mg + {}^{24}Mg \dots$	108	
4.4	α -Clu	stering	110	
	4.4.1	Three- α Cluster Configurations in ⁴ He + ⁸ Be	110	
	4.4.2	Survival of α -Clusters in ⁴ He + ²⁰⁸ Pb Near-Barrier Fusion	112	
4.5	Transf	er in Heavy-Ion Collisions	113	
	4.5.1	Particle Number Projection Technique	113	
	4.5.2	Sub-barrier Transfer in ${}^{16}\text{O} + {}^{208}\text{Pb} \dots \dots \dots \dots$	115	
	4.5.3	Pairing Vibrations	117	
4.6	Deep-Inelastic Collisions			
	4.6.1	Fluctuations of One-Body Observables	119	
	4.6.2	The ${}^{40}Ca + {}^{40}Ca$ Reaction Well Above the Barrier	120	
4.7	The Q	uasi-fission Process	124	
	4.7.1	Fusion Hindrance in Heavy Systems	125	
	4.7.2	Effects of the Structure of the Collision Partners	127	
4.8	Actini	de Collisions	129	
	4.8.1	Role of the Initial Orientation	129	
	4.8.2	Lifetime and Spontaneous e^+e^- Emission	133	
4.9	Dynar	nics of Neutron Star Crust	135	
4.10	Select	ed Conclusions and Perspectives	138	
Refe	erences		139	
Cov	alent B	inding on the Femtometer Scale: Nuclear Molecules	147	
Wolf	fram vo	n Oertzen and Matko Milin		
5.1	Molec	ular Binding Energy Between Nuclei	147	
	5.1.1	Molecular Potentials Between Nuclei	149	
	5.1.2	The Simplest Covalent Particle Stable Molecules, $9-12$ Be .	150	
	5.1.3	The Antisymmetrized Molecular Dynamics (AMD) for		
		the Exotic Light Nuclei	156	
5.2	Molec	ular and Cluster States in Carbon Isotopes $^{12-16}C$	159	
	5.2.1	12 C and the Second 0^+_2 State, the Hoyle State	159	
	5.2.2	Parity Splitting of Rotational Cluster-Bands in Carbon		
		Isotopes	161	
	5.2.3	Valence Neutrons and the Structures in $^{13-14}C$	163	
5.3	Intrins	ically Reflection Asymmetric Molecules and Parity Doublets	166	
5.4	Covale	ently Bound Molecular States in Oxygen Isotopes	168	
	5.4.1	¹⁸ O: Coexistence of Shell Model States and Covalently		
		Bound Molecules	168	
	5.4.2	Covalently Bound Molecular States in ¹⁹ O and ²⁰ O	169	
	5.4.3	Moments of Inertia, Parity Splitting and Binding Energies		
		of Rotational Bands in Oxygen Isotopes	170	
5.5	Covale	ently Bound Molecular States in the Neon Fluorine Nuclei	173	
	5.5.1	20 Ne	173	
	5.5.2	21 Ne	174	
	5.5.3	²² Ne	177	
	5.5.4	$^{21-23}$ F	177	

	5.6	Cluste	er Structures in Heavier Nuclei	178	
	Refe	erences		179	
6	Clusterization in Ternary Fission				
	6.1	Searcl	hing for New Ternary Decays—Background and Motivation .	183	
	6.2	Comp	parative Study of the CCT in 252 Cf (sf) and 235 U(n _{th} , f)		
		Reaction			
		6.2.1	Experiment Ex1	187	
		6.2.2	Experiment Ex2	189	
		6.2.3	Results of Experiment Ex1, ²⁵² Cf (sf)	190	
		6.2.4	Results of Experiment Ex2, $^{235}U(n_{th}, f)$	193	
		6.2.5	Summary and Conclusions	196	
	6.3	CCT	Modes Based on the Deformed Magic Clusters	197	
	6.4	Terna	ry Decays with Comparable Masses of the Fragments	200	
	6.5	CCT	with Light Ion Emission	202	
	6.6	Addit	ional Information from the Neutron Gated Data	207	
		6.6.1	Experiment Ex3	207	
		6.6.2	Experiment Ex4	208	
		6.6.3	Efficiency for the Registration of CCT Events	210	
		6.6.4	Inclusive Data for the Experiments Ex1, 3, 4	211	
		6.6.5	Results of Neutron Gated Data for the Experiments Ex3		
			and Ex4	215	
		6.6.6	Mass Resolution of the Set-Ups Used	221	
		6.6.7	Triple Coincidences in Ex4	223	
		6.6.8	Conclusions to Sect. 6.6	226	
	6.7	Exper	iments on the Heavy Ion Beams	227	
		6.7.1	Collinear Multi-Body Decays in the Reaction $^{238}U + {}^{4}He$		
			(40 MeV)	227	
		6.7.2	CCT in 232 Th + d (10 MeV) Reaction	231	
	6.8	Cluste	ring in Binary and Ternary Fission—Comparative Analysis .	236	
	6.9	Perspectives			
		A.1	Reliability of Linear Structures in the Scatter Plot of		
			Fragments Masses	241	
	Refe	rences		243	