Contents

1	Introduction to ASReml Software	1
	Why ASReml?	2
	ASRem1 Workflow	2
	Setting Up ConTEXT Editor to Create and Execute	
	ASReml Command Files	3
	Starting with ASReml	3
	Data Field Definitions	8
	Transformation of Response Variables	9
	Data File and Job Control Qualifiers	10
	Specifying Terms in the Linear Model	14
	Variance Header Line and Random Model Terms	15
	Running ASReml	17
	ASReml Output Files	18
	Tabulation.	26
	Prediction	27
	Processing Multiple Analyses with One Command File	29
	Linear Combinations of Variance Components	37
	A Brief Introduction to ASReml-R	39
	Data Set Used in the Analysis	40
	Fitting a Model in ASRemI-R	43
2	A Review of Linear Mixed Models	49
	Mixed Models Compared to Traditional ANOVA	50
	Balanced Data: ANOVA with SAS Proc GLM	51
	Balanced Data: ANOVA with R.	53
	Balanced Data: ANOVA with ASRem1	55
	Balanced Data: Mixed Models Analysis with SAS Proc MIXED	57
	Balanced Data: Mixed Models Analysis with R.	57
	Balanced Data: Mixed Models Analysis with ASReml	59
	Hypothesis Testing with Mixed Models	60
	Prediction: BLUE and BLUP.	61
	Unbalanced Data	62
	ANOVA with SAS Proc GLM	62
	Unbalanced Data: Mixed Models Analysis with SAS	65
	Mixed Models in a Nutshell: Theory and Concepts	74
	The Model	74
	Fixed and Random Effects	74
		76
	Expectations and Variance-Covariance for the Random Effects	70 77
	A Trivial Example: Daughters Lactation Yield	79
	Solving the Model	79 80
	The Mixed Model Equations	δU

	Estimability in Models with Multiple Fixed Effects	81 84 85
3	Variance Modeling in ASReml Variance Model Specifications Gamma and Sigma Parameterization in ASReml Homogenous Variance Models Heterogeneous R Variance Structures Heterogeneous G Variance Structures Initial Values	87 88 88 89 91 98 102
4	Breeding Values Family Selection Causal Variance Components and Resemblance The GCA (Family) Model Analysis of Half-Sib Progeny Data Using GCA Model Variance Components and Their Linear Combinations Variation Among Family Means Within-Family Variation The Accuracy of Breeding Values Individual ("Animal") Model Animal Model for Half-Sib Family Data The Animal Model with Deep Pedigrees and Maternal Effects Accounting for Genetic Groups Effect in Predictions Treating Genetic Groups as a Fixed Effect in GCA model Fitting Genetic Groups as Pedigree Information in Individual Model Effect of Self-Fertilization on Variance Components	107 108 109 112 113 115 117 118 120 121 122 127 134 134 136 138
5	Genetic Values Specific Combining Ability (SCA) and Genetic Values Diallel Mating Designs Diallel Example Specific Combining Ability (SCA) Effect Reciprocal Effects Interpretation of Observed Variances from Diallels Linear Combinations of Variances from Diallels Factorial Mating Designs Analysis of Cloned Progeny Test Data	141 142 142 144 149 150 152 153 156 158
6	Multivariate Models Introduction Some Theory The Linear Mixed Model for Multivariate Models Maize RILs Multivariate Model Linear Combinations of Variances and Covariances Predictions from Multivariate Models The Animal Model in a Multivariate Re-visitation	
7	Spatial Analysis Background Modeling Spatial Effects Variance-Covariance Matrix of Residuals Model Selection Example of Spatial Analyses of Field Trial Data Heritability Estimate from Spatial Model	204 204 205 208 209

8	Multi Environmental Trials	227 228
		228
	MET: General Approach and Considerations	228
	Statistical Models	230
		235 235
	Example: Analysis of Pine Polymix MET Data	235 235
		235
	Analyze Each Site Separately to Obtain Variances	230
	Model 3: Cross-Classified ANOVA	237
	Model 4: Compound Symmetry	238 239
	Model 5: Heterogeneous Residuals and Block Effects	
	Model 6: CORUH G Structure	239
	Models 7 and 8: US and CORGH Structures	240
	Model 9: FA1 Covariance Structure	240
	Model 10: FA1 Correlation Structure	242
	Model 11: XFA/ Structure	245
	Model 12: XFA2 Structure	246
	Model 13: XFA3 Structure	248
	MET Models with ASReml-R	248
	Genetic Prediction with FA Models	249
	Estimating Heritability and Reliability from FA Models	254
	Biplots from FA Models	262
9	Exploratory Marker Data Analysis	263
	Marker Data and Some Definitions	264
	Allele Frequencies	266
	Hardy-Weinberg Equilibrium (HWE)	266
	Polymorphism Information Content	267
	Heterozygosity	267
	Linkage Disequilibrium (LD)	267
	Software and Tools for Processing Marker Data	269
	Introduction to the Synbreed Package	269
	Maritime Pine Data Example	270
	Recoding Loci and Imputing Missing Genotypes	276
	Genetics Package for Estimating Population Parameters	277
	Data Summary and Visualization	281
	Genetic Map	281
	Pairwise Linkage Disequilibrium	282
10	Imputing Missing Genotypes	287
	Introduction	288
	The Idea Behind Imputation	289
	Pedigree Free Imputation	289
	Imputation from Densely Genotyped Reference Panel	
	to Individuals Genotyped at Lower Density	292
	Imputation Without a Reference Panel	304
	Imputation with the Synbreed Package	306
11	Genomic Relationships and GBLUP	311
	Realized Genomic Relationships	312
	Calculation of G Matrices	312
	Genomic BLUP.	324
	GBLUP with the Synbreed Package	324 327
	Cross-Validation	336
	GBLUP with Replicated Family Data in ASReml	343
	Blended Genetic Relationships	343 350
	Example Calculation of H Matrix	350 351
		551

12	Genomic Selection	
	Regression Models for Genomic Prediction	356
	A Brief Tour of Bayesian Concepts	357
	Choice of Statistical Models	361
	Bayesian Regression Examples with BGLR Package	362
	Model Fit Statistics and Model Convergence	367
	Choice of Priors	371
	Genetic Architecture	376
	Cross-Validation	381
Inde	x of Figures	385
Lite	rature Cited	389
Inde	X	395