Table of Contents

Pr	Preface xiii		
Qu	Quick Glossary		
1.	Introduction	. 1	
	What Is Bitcoin?	1	
	History of Bitcoin	4	
	Bitcoin Uses, Users, and Their Stories	5	
	Getting Started	6	
	Choosing a Bitcoin Wallet	6	
	Quick Start	8	
	Getting Your First Bitcoin	10	
	Finding the Current Price of Bitcoin	11	
	Sending and Receiving Bitcoin	12	
2.	How Bitcoin Works	15	
	Transactions, Blocks, Mining, and the Blockchain	15	
	Bitcoin Overview	15	
	Buying a Cup of Coffee	16	
	Bitcoin Transactions	18	
	Transaction Inputs and Outputs	18	
	Transaction Chains	19	
	Making Change	20	
	Common Transaction Forms	21	
	Constructing a Transaction	22	
	Getting the Right Inputs	22	
	Creating the Outputs	24	
	Adding the Transaction to the Ledger	25	
	Bitcoin Mining	26	
	Mining Transactions in Blocks	27	

	Spending the Transaction	29
3.	Bitcoin Core: The Reference Implementation	31
	Bitcoin Development Environment	32
	Compiling Bitcoin Core from the Source Code	32
	Selecting a Bitcoin Core Release	33
	Configuring the Bitcoin Core Build	34
	Building the Bitcoin Core Executables	37
	Running a Bitcoin Core Node	38
	Running Bitcoin Core for the First Time	39
	Configuring the Bitcoin Core Node	39
	Bitcoin Core Application Programming Interface (API)	43
	Getting Information on the Bitcoin Core Client Status	44
	Exploring and Decoding Transactions	45
	Exploring Blocks	47
	Using Bitcoin Core's Programmatic Interface	48
	Alternative Clients, Libraries, and Toolkits	51
	C/C++	52
	JavaScript	52
	Java	52
	Python	52
	Ruby	53
	Go	53
	Rust	53
	C#	53
	Objective-C	53
1.	Keys, Addresses	55
	Introduction	55
	Public Key Cryptography and Cryptocurrency	56
	Private and Public Keys	57
	Private Keys	58
	Public Keys	60
	Elliptic Curve Cryptography Explained	60
	Generating a Public Key	63
	Bitcoin Addresses	64
	Base58 and Base58Check Encoding	66
	Key Formats	70
	Implementing Keys and Addresses in Python	76
	·	80
		80
	Pay-to-Script Hash (P2SH) and Multisig Addresses	81

	Vanity Addresses	82
	Paper Wallets	88
5.	Wallets	93
	Wallet Technology Overview	93
	Nondeterministic (Random) Wallets	94
	Deterministic (Seeded) Wallets	95
	HD Wallets (BIP-32/BIP-44)	96
	Seeds and Mnemonic Codes (BIP-39)	97
	Wallet Best Practices	97
	Using a Bitcoin Wallet	98
	Wallet Technology Details	99
	Mnemonic Code Words (BIP-39)	99
	Creating an HD Wallet from the Seed	106
	Using an Extended Public Key on a Web Store	110
6.	Transactions	117
	Introduction	117
	Transactions in Detail	117
	Transactions—Behind the Scenes	118
	Transaction Outputs and Inputs	119
	Transaction Outputs	121
	Transaction Inputs	123
	Transaction Fees	126
	Adding Fees to Transactions	129
	Transaction Scripts and Script Language	131
	Turing Incompleteness	131
	Stateless Verification	132
	Script Construction (Lock + Unlock)	132
	Pay-to-Public-Key-Hash (P2PKH)	136
	Digital Signatures (ECDSA)	138
	How Digital Signatures Work	139
	Verifying the Signature	141
	•	141
	ECDSA Math	143
		145
	Bitcoin Addresses, Balances, and Other Abstractions	145
7.		149
		149
		149
	Pay-to-Script-Hash (P2SH)	151

	P2SH Addresses	153
	Benefits of P2SH	154
	Redeem Script and Validation	154
	Data Recording Output (RETURN)	155
	Timelocks	157
	Transaction Locktime (nLocktime)	157
	Check Lock Time Verify (CLTV)	158
	Relative Timelocks	160
	Relative Timelocks with nSequence	160
	Relative Timelocks with CSV	162
	Median-Time-Past	163
	Timelock Defense Against Fee Sniping	163
	Scripts with Flow Control (Conditional Clauses)	164
	Conditional Clauses with VERIFY Opcodes	165
	Using Flow Control in Scripts	166
	Complex Script Example	167
8.	The Bitcoin Network	171
	Peer-to-Peer Network Architecture	171
	Node Types and Roles	172
	The Extended Bitcoin Network	173
	Bitcoin Relay Networks	176
	Network Discovery	176
	Full Nodes	180
	Exchanging "Inventory"	181
	Simplified Payment Verification (SPV) Nodes	183
	Bloom Filters	185
	How Bloom Filters Work	186
	How SPV Nodes Use Bloom Filters	189
	SPV Nodes and Privacy	190
	Encrypted and Authenticated Connections	191
	Tor Transport	191
	Peer-to-Peer Authentication and Encryption	191
	Transaction Pools	192
9.	The Blockchain	195
	Introduction	195
	Structure of a Block	196
	Block Header	197
	Block Identifiers: Block Header Hash and Block Height	197
	The Genesis Block	198
	Linking Blocks in the Blockchain	200

	Merkle Trees	201
	Merkle Trees and Simplified Payment Verification (SPV)	207
	Bitcoin's Test Blockchains	207
	Testnet—Bitcoin's Testing Playground	208
	Segnet—The Segregated Witness Testnet	210
	Regtest—The Local Blockchain	210
	Using Test Blockchains for Development	211
10.	Mining and Consensus	213
	Introduction	213
	Bitcoin Economics and Currency Creation	215
	Decentralized Consensus	217
	Independent Verification of Transactions	218
	Mining Nodes	219
	Aggregating Transactions into Blocks	220
	The Coinbase Transaction	221
	Coinbase Reward and Fees	223
	Structure of the Coinbase Transaction	224
	Coinbase Data	225
	Constructing the Block Header	227
	Mining the Block	228
	Proof-of-Work Algorithm	228
	Target Representation	235
	Retargeting to Adjust Difficulty	235
	Successfully Mining the Block	237
	Validating a New Block	238
	Assembling and Selecting Chains of Blocks	239
	Blockchain Forks	240
	Mining and the Hashing Race	247
	The Extra Nonce Solution	249
	Mining Pools	250
	Consensus Attacks	253
	Changing the Consensus Rules	256
	Hard Forks	256
	Hard Forks: Software, Network, Mining, and Chain	258
	Diverging Miners and Difficulty	259
	Contentious Hard Forks	260
	Soft Forks	261
	Criticisms of Soft Forks	262
	Soft Fork Signaling with Block Version	262
	BIP-34 Signaling and Activation	263
	BIP-9 Signaling and Activation	264

	Consensus Software Development	266
11.	Bitcoin Security	. 269
	Security Principles	269
	Developing Bitcoin Systems Securely	270
	The Root of Trust	271
	User Security Best Practices	272
	Physical Bitcoin Storage	273
	Hardware Wallets	273
	Balancing Risk	273
	Diversifying Risk	274
	Multisig and Governance	274
	Survivability	274
	Conclusion	274
12.	Blockchain Applications	275
	Introduction	275
	Building Blocks (Primitives)	276
	Applications from Building Blocks	278
	Colored Coins	278
	Using Colored Coins	279
	Issuing Colored Coins	280
	Colored Coins Transactions	280
	Counterparty	283
	Payment Channels and State Channels	284
	State Channels—Basic Concepts and Terminology	285
	Simple Payment Channel Example	286
	Making Trustless Channels	289
	Asymmetric Revocable Commitments	292
	Hash Time Lock Contracts (HTLC)	296
	Routed Payment Channels (Lightning Network)	297
	Basic Lightning Network Example	298
	Lightning Network Transport and Routing	301
	Lightning Network Benefits	303
	Conclusion	304

304

В.	Transaction Script Language Operators, Constants, and Symbols	317
C.	Bitcoin Improvement Proposals	323
D.	Segregated Witness	331
E.	Bitcore	345
F.	pycoin, ku, and tx	349
G.	Bitcoin Explorer (bx) Commands	359
lno	lex	363